Properties

Label 2.3_433.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 433 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1299= 3 \cdot 433 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 8 x^{2} + 9 x + 27 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_433.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 19 + 13\cdot 109 + 76\cdot 109^{2} + 103\cdot 109^{3} + 83\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 91\cdot 109 + 15\cdot 109^{2} + 50\cdot 109^{3} + 103\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 74 + 62\cdot 109 + 102\cdot 109^{2} + 93\cdot 109^{3} + 11\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 99 + 50\cdot 109 + 23\cdot 109^{2} + 79\cdot 109^{3} + 18\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,3)(2,4)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.