Properties

Label 2.3_37e2.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4107= 3 \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 4 x^{6} - 65 x^{5} + 43 x^{4} + 174 x^{3} + 840 x^{2} + 360 x + 144 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 50\cdot 67 + 26\cdot 67^{2} + 17\cdot 67^{3} + 13\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 66\cdot 67 + 5\cdot 67^{2} + 66\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 + 43\cdot 67 + 50\cdot 67^{2} + 51\cdot 67^{3} + 10\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 47 + 57\cdot 67 + 57\cdot 67^{2} + 41\cdot 67^{3} + 2\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 51 + 23\cdot 67 + 45\cdot 67^{2} + 55\cdot 67^{3} + 17\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 54 + 56\cdot 67 + 42\cdot 67^{2} + 26\cdot 67^{3} + 53\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 60 + 25\cdot 67 + 51\cdot 67^{2} + 48\cdot 67^{3} + 22\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 65 + 10\cdot 67 + 54\cdot 67^{2} + 25\cdot 67^{3} + 14\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,7,6)(2,8,3,5)$
$(1,2)(3,7)(4,5)(6,8)$
$(1,3)(2,7)(4,8)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,3)(4,6)(5,8)$$-2$
$2$$2$$(1,2)(3,7)(4,5)(6,8)$$0$
$2$$2$$(1,8)(2,4)(3,6)(5,7)$$0$
$2$$4$$(1,4,7,6)(2,8,3,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.