Properties

Label 2.3_37e2.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 37^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$4107= 3 \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 5 x^{2} + 30 x + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 57\cdot 67 + 63\cdot 67^{2} + 41\cdot 67^{3} + 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 33\cdot 67 + 26\cdot 67^{2} + 11\cdot 67^{3} + 64\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 58 + 36\cdot 67 + 38\cdot 67^{2} + 7\cdot 67^{3} + 37\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 62 + 6\cdot 67 + 5\cdot 67^{2} + 6\cdot 67^{3} + 31\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)$ $-2$
$2$ $2$ $(1,3)(2,4)$ $0$
$2$ $2$ $(1,2)$ $0$
$2$ $4$ $(1,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.