Properties

Label 2.3_37.8t6.2
Dimension 2
Group $D_{8}$
Conductor $ 3 \cdot 37 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$111= 3 \cdot 37 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} - 6 x^{5} + 9 x^{4} - 6 x^{3} + x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 22 + 21\cdot 127 + 116\cdot 127^{2} + 9\cdot 127^{3} + 72\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 122\cdot 127 + 27\cdot 127^{2} + 20\cdot 127^{3} + 10\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 + 13\cdot 127 + 43\cdot 127^{2} + 33\cdot 127^{3} + 40\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 47 + 79\cdot 127 + 111\cdot 127^{2} + 84\cdot 127^{3} + 123\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 52 + 25\cdot 127 + 117\cdot 127^{2} + 61\cdot 127^{3} + 2\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 95 + 37\cdot 127 + 101\cdot 127^{2} + 115\cdot 127^{3} + 67\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 100 + 50\cdot 127 + 105\cdot 127^{2} + 107\cdot 127^{3} + 92\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 123 + 30\cdot 127 + 12\cdot 127^{2} + 74\cdot 127^{3} + 98\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,3)(4,7)(6,8)$
$(1,6,5,8)(2,7,3,4)$
$(1,4,8,3,5,7,6,2)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,5)(2,3)(4,7)(6,8)$ $-2$ $-2$
$4$ $2$ $(1,8)(2,3)(5,6)$ $0$ $0$
$4$ $2$ $(1,3)(2,5)(4,8)(6,7)$ $0$ $0$
$2$ $4$ $(1,8,5,6)(2,4,3,7)$ $0$ $0$
$2$ $8$ $(1,4,8,3,5,7,6,2)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,3,6,4,5,2,8,7)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.