Properties

Label 2.3_37.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 37 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$111= 3 \cdot 37 $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} + 28 x^{4} + 15 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 101\cdot 127 + 33\cdot 127^{2} + 28\cdot 127^{3} + 49\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 41 + 37\cdot 127 + 52\cdot 127^{2} + 77\cdot 127^{3} + 123\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 58 + 59\cdot 127 + 59\cdot 127^{2} + 68\cdot 127^{3} + 88\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 61 + 20\cdot 127 + 112\cdot 127^{2} + 110\cdot 127^{3} + 116\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 66 + 106\cdot 127 + 14\cdot 127^{2} + 16\cdot 127^{3} + 10\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 69 + 67\cdot 127 + 67\cdot 127^{2} + 58\cdot 127^{3} + 38\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 86 + 89\cdot 127 + 74\cdot 127^{2} + 49\cdot 127^{3} + 3\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 111 + 25\cdot 127 + 93\cdot 127^{2} + 98\cdot 127^{3} + 77\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.