Properties

Label 2.3_3541.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 3541 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$10623= 3 \cdot 3541 $
Artin number field: Splitting field of $f= x^{8} - 29 x^{6} + 1516 x^{4} + 19575 x^{2} + 455625 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_3541.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 6 + 40\cdot 43 + 35\cdot 43^{2} + 18\cdot 43^{3} + 19\cdot 43^{4} + 16\cdot 43^{5} + 37\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 7 + 34\cdot 43 + 28\cdot 43^{2} + 39\cdot 43^{3} + 9\cdot 43^{4} + 14\cdot 43^{5} + 34\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 9 + 29\cdot 43 + 42\cdot 43^{2} + 20\cdot 43^{3} + 41\cdot 43^{4} + 13\cdot 43^{5} + 5\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 11 + 42\cdot 43 + 5\cdot 43^{2} + 22\cdot 43^{3} + 10\cdot 43^{4} + 10\cdot 43^{5} + 9\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 32 + 37\cdot 43^{2} + 20\cdot 43^{3} + 32\cdot 43^{4} + 32\cdot 43^{5} + 33\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 34 + 13\cdot 43 + 22\cdot 43^{3} + 43^{4} + 29\cdot 43^{5} + 37\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 36 + 8\cdot 43 + 14\cdot 43^{2} + 3\cdot 43^{3} + 33\cdot 43^{4} + 28\cdot 43^{5} + 8\cdot 43^{6} +O\left(43^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 37 + 2\cdot 43 + 7\cdot 43^{2} + 24\cdot 43^{3} + 23\cdot 43^{4} + 26\cdot 43^{5} + 5\cdot 43^{6} +O\left(43^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.