Properties

Label 2.3_3253.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 3253 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$9759= 3 \cdot 3253 $
Artin number field: Splitting field of $f= x^{8} + 35 x^{6} + 1732 x^{4} - 17745 x^{2} + 257049 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 19 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 1 + 19 + 6\cdot 19^{2} + 12\cdot 19^{3} + 7\cdot 19^{4} + 11\cdot 19^{5} + 10\cdot 19^{6} + 9\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 2 + 7\cdot 19 + 6\cdot 19^{2} + 8\cdot 19^{3} + 17\cdot 19^{5} + 15\cdot 19^{6} + 15\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 5 + 15\cdot 19 + 5\cdot 19^{2} + 5\cdot 19^{3} + 15\cdot 19^{4} + 9\cdot 19^{6} + 8\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 7 + 3\cdot 19 + 8\cdot 19^{2} + 13\cdot 19^{3} + 15\cdot 19^{4} + 14\cdot 19^{5} + 13\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 12 + 15\cdot 19 + 10\cdot 19^{2} + 5\cdot 19^{3} + 3\cdot 19^{4} + 4\cdot 19^{5} + 18\cdot 19^{6} + 5\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 14 + 3\cdot 19 + 13\cdot 19^{2} + 13\cdot 19^{3} + 3\cdot 19^{4} + 18\cdot 19^{5} + 9\cdot 19^{6} + 10\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 17 + 11\cdot 19 + 12\cdot 19^{2} + 10\cdot 19^{3} + 18\cdot 19^{4} + 19^{5} + 3\cdot 19^{6} + 3\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 18 + 17\cdot 19 + 12\cdot 19^{2} + 6\cdot 19^{3} + 11\cdot 19^{4} + 7\cdot 19^{5} + 8\cdot 19^{6} + 9\cdot 19^{7} +O\left(19^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.