Properties

Label 2.3_29e2.12t11.2c1
Dimension 2
Group $S_3 \times C_4$
Conductor $ 3 \cdot 29^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3 \times C_4$
Conductor:$2523= 3 \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{12} - 2 x^{11} + 3 x^{9} - 3 x^{8} + 17 x^{7} + 22 x^{6} - 25 x^{5} - 20 x^{4} + 91 x^{3} + 230 x^{2} + 228 x + 83 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3 \times C_4$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{4} + 2 x^{2} + 11 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a^{3} + 4 a^{2} + 15 a + 12 + \left(17 a^{3} + 4 a^{2} + 5 a + 3\right)\cdot 19 + \left(10 a^{2} + a + 9\right)\cdot 19^{2} + \left(3 a^{3} + 10 a^{2} + 10 a + 18\right)\cdot 19^{3} + \left(7 a^{3} + 7 a + 2\right)\cdot 19^{4} + \left(10 a^{3} + 2 a^{2} + 18 a + 10\right)\cdot 19^{5} + \left(12 a^{3} + 12 a^{2} + a + 7\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 2 a^{3} + 13 a^{2} + 8 a + 13 + \left(8 a^{3} + 2 a^{2} + 16 a + 1\right)\cdot 19 + \left(4 a^{3} + 6 a^{2} + 12 a + 15\right)\cdot 19^{2} + \left(15 a^{3} + 12 a^{2} + 8 a + 6\right)\cdot 19^{3} + \left(17 a^{3} + 7 a^{2} + 11 a + 12\right)\cdot 19^{4} + \left(15 a^{3} + 6 a^{2} + 5 a + 17\right)\cdot 19^{5} + \left(17 a^{3} + 14 a^{2} + 5 a + 5\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 16 a^{3} + 9 a^{2} + 13 a + 6 + \left(12 a^{3} + 7 a^{2} + 4 a + 5\right)\cdot 19 + \left(6 a^{3} + 8 a^{2} + 13 a + 12\right)\cdot 19^{2} + \left(15 a^{3} + 11 a^{2} + 13 a + 14\right)\cdot 19^{3} + \left(13 a^{2} + 5 a + 4\right)\cdot 19^{4} + \left(2 a^{3} + 6 a^{2} + 10 a + 15\right)\cdot 19^{5} + \left(16 a^{3} + 6 a^{2} + 15\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 9 a^{3} + 6 a^{2} + 6 a + 9 + \left(18 a^{3} + a^{2} + 12 a + 11\right)\cdot 19 + \left(9 a^{3} + 5 a + 18\right)\cdot 19^{2} + \left(3 a^{3} + 6 a^{2} + 2 a + 18\right)\cdot 19^{3} + \left(16 a^{3} + 9 a^{2} + 9 a + 5\right)\cdot 19^{4} + \left(15 a^{3} + 9 a^{2} + 11 a + 12\right)\cdot 19^{5} + \left(10 a^{3} + 12 a^{2} + 12 a + 5\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 10 a^{3} + 10 a^{2} + 14 a + 5 + \left(9 a^{3} + 15 a^{2} + a\right)\cdot 19 + \left(9 a^{3} + 7 a^{2} + 9 a + 16\right)\cdot 19^{2} + \left(3 a^{3} + 18 a^{2} + 2 a + 18\right)\cdot 19^{3} + \left(14 a^{3} + 8 a^{2} + 5 a + 5\right)\cdot 19^{4} + \left(18 a^{3} + 3 a^{2} + a + 7\right)\cdot 19^{5} + \left(a^{3} + 11 a^{2} + 14 a + 13\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 9 a^{3} + 15 a^{2} + 15 a + 16 + \left(10 a^{3} + 9 a^{2} + 3 a + 11\right)\cdot 19 + \left(6 a^{3} + 9 a^{2} + a + 7\right)\cdot 19^{2} + \left(2 a^{3} + 6 a + 10\right)\cdot 19^{3} + \left(8 a^{3} + 7 a^{2} + 4 a + 1\right)\cdot 19^{4} + \left(3 a^{3} + 12 a^{2} + 4 a + 18\right)\cdot 19^{5} + \left(13 a^{2} + 6 a\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 3 a^{3} + 4 a^{2} + 15 a + 3 + \left(5 a^{3} + 5 a^{2} + 8 a + 6\right)\cdot 19 + \left(15 a^{3} + 12 a^{2} + 14 a + 6\right)\cdot 19^{2} + \left(16 a^{3} + 7 a^{2} + 15 a + 13\right)\cdot 19^{3} + \left(14 a^{3} + 8 a^{2} + 3 a + 1\right)\cdot 19^{4} + \left(13 a^{3} + 15 a^{2} + 3 a + 2\right)\cdot 19^{5} + \left(6 a^{2} + 17 a + 8\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 16 a^{3} + 15 a^{2} + 6 a + 14 + \left(7 a^{3} + 13 a^{2} + a + 2\right)\cdot 19 + \left(a^{3} + 7 a^{2} + 6 a + 3\right)\cdot 19^{2} + \left(14 a^{3} + 14 a^{2} + 11 a + 5\right)\cdot 19^{3} + \left(2 a^{3} + 10 a^{2} + 12 a + 15\right)\cdot 19^{4} + \left(13 a^{3} + 14 a + 4\right)\cdot 19^{5} + \left(10 a^{3} + 2 a^{2} + 18 a + 8\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 7 a^{3} + a^{2} + 18 a + 16 + \left(17 a^{3} + 9 a^{2} + 11 a + 14\right)\cdot 19 + \left(16 a^{3} + a^{2} + 13 a + 10\right)\cdot 19^{2} + \left(14 a^{3} + 2 a^{2} + 17 a + 18\right)\cdot 19^{3} + \left(5 a^{3} + 3 a^{2} + 8\right)\cdot 19^{4} + \left(a^{3} + a^{2} + 17 a + 7\right)\cdot 19^{5} + \left(13 a^{3} + 5 a + 16\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 10 }$ $=$ $ 6 a^{3} + 16 a^{2} + 8 a + 18 + \left(13 a^{3} + 13 a^{2} + 12 a + 9\right)\cdot 19 + \left(9 a^{3} + 9 a^{2} + 12 a + 16\right)\cdot 19^{2} + \left(5 a^{3} + 15 a^{2} + 6 a + 6\right)\cdot 19^{3} + \left(13 a^{3} + 14 a^{2} + 15 a + 11\right)\cdot 19^{4} + \left(7 a^{3} + 7 a^{2} + 13 a + 14\right)\cdot 19^{5} + \left(3 a^{3} + 4 a^{2} + 2\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 11 }$ $=$ $ 14 a^{3} + 7 a^{2} + 2 a + 11 + \left(4 a^{3} + 11 a^{2} + 15 a + 1\right)\cdot 19 + \left(9 a^{3} + 2 a^{2} + 3 a + 18\right)\cdot 19^{2} + \left(18 a^{3} + a^{2} + 8 a + 12\right)\cdot 19^{3} + \left(6 a^{3} + 16 a^{2} + 16 a + 2\right)\cdot 19^{4} + \left(7 a^{3} + 3 a^{2} + 17 a + 6\right)\cdot 19^{5} + \left(6 a^{3} + 9 a^{2} + 9 a + 1\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$
$r_{ 12 }$ $=$ $ 15 a^{3} + 14 a^{2} + 13 a + 12 + \left(7 a^{3} + 6\right)\cdot 19 + \left(4 a^{3} + a + 18\right)\cdot 19^{2} + \left(a^{3} + 14 a^{2} + 11 a + 6\right)\cdot 19^{3} + \left(6 a^{3} + 13 a^{2} + 2 a + 2\right)\cdot 19^{4} + \left(4 a^{3} + 6 a^{2} + 15 a + 17\right)\cdot 19^{5} + \left(a^{3} + 2 a^{2} + a + 8\right)\cdot 19^{6} +O\left(19^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,12,2,11)(3,4,6,9)(5,8,7,10)$
$(1,4)(2,9)(3,11)(6,12)$
$(3,10)(4,5)(6,8)(7,9)$
$(1,2)(3,8)(4,7)(5,9)(6,10)(11,12)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,6)(4,9)(5,7)(8,10)(11,12)$$-2$
$3$$2$$(1,4)(2,9)(3,11)(6,12)$$0$
$3$$2$$(1,2)(3,8)(4,7)(5,9)(6,10)(11,12)$$0$
$2$$3$$(1,4,5)(2,9,7)(3,10,11)(6,8,12)$$-1$
$1$$4$$(1,12,2,11)(3,4,6,9)(5,8,7,10)$$-2 \zeta_{4}$
$1$$4$$(1,11,2,12)(3,9,6,4)(5,10,7,8)$$2 \zeta_{4}$
$3$$4$$(1,6,2,3)(4,12,9,11)(5,8,7,10)$$0$
$3$$4$$(1,3,2,6)(4,11,9,12)(5,10,7,8)$$0$
$2$$6$$(1,7,4,2,5,9)(3,12,10,6,11,8)$$1$
$2$$12$$(1,10,9,12,5,3,2,8,4,11,7,6)$$-\zeta_{4}$
$2$$12$$(1,8,9,11,5,6,2,10,4,12,7,3)$$\zeta_{4}$
The blue line marks the conjugacy class containing complex conjugation.