Properties

Label 2.3_277.7t2.1c2
Dimension 2
Group $D_{7}$
Conductor $ 3 \cdot 277 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$831= 3 \cdot 277 $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 8 x^{5} + 4 x^{4} + 11 x^{3} + 28 x^{2} + 22 x + 9 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd
Determinant: 1.3_277.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 2 + \left(15 a + 21\right)\cdot 23 + \left(21 a + 14\right)\cdot 23^{2} + \left(9 a + 22\right)\cdot 23^{3} + \left(22 a + 17\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 20 + \left(17 a + 3\right)\cdot 23 + \left(21 a + 21\right)\cdot 23^{2} + \left(21 a + 12\right)\cdot 23^{3} + \left(20 a + 1\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 20 + \left(7 a + 19\right)\cdot 23 + \left(a + 19\right)\cdot 23^{2} + \left(13 a + 20\right)\cdot 23^{3} + 6\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 9 + 16\cdot 23 + 2\cdot 23^{2} + 18\cdot 23^{3} + 9\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 3 + \left(5 a + 12\right)\cdot 23 + \left(a + 1\right)\cdot 23^{2} + \left(a + 12\right)\cdot 23^{3} + \left(2 a + 21\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 a + 13 + \left(16 a + 19\right)\cdot 23 + \left(9 a + 2\right)\cdot 23^{2} + \left(2 a + 5\right)\cdot 23^{3} + \left(21 a + 20\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 16 a + 4 + \left(6 a + 22\right)\cdot 23 + \left(13 a + 5\right)\cdot 23^{2} + 20 a\cdot 23^{3} + \left(a + 14\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2)(4,6)(5,7)$
$(1,6)(2,7)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$2$
$7$$2$$(1,2)(4,6)(5,7)$$0$
$2$$7$$(1,7,5,2,6,3,4)$$\zeta_{7}^{4} + \zeta_{7}^{3}$
$2$$7$$(1,5,6,4,7,2,3)$$-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
$2$$7$$(1,2,4,5,3,7,6)$$\zeta_{7}^{5} + \zeta_{7}^{2}$
The blue line marks the conjugacy class containing complex conjugation.