Properties

Label 2.3_2617.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 2617 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$7851= 3 \cdot 2617 $
Artin number field: Splitting field of $f= x^{8} - 43 x^{6} + 2041 x^{4} + 8256 x^{2} + 36864 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 6 + 85\cdot 109 + 89\cdot 109^{2} + 107\cdot 109^{3} + 24\cdot 109^{4} + 88\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 10 + 46\cdot 109 + 93\cdot 109^{2} + 61\cdot 109^{3} + 59\cdot 109^{4} + 72\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 24 + 108\cdot 109 + 81\cdot 109^{2} + 82\cdot 109^{3} + 99\cdot 109^{4} + 12\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 51 + 41\cdot 109 + 103\cdot 109^{2} + 43\cdot 109^{3} + 108\cdot 109^{4} + 108\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 58 + 67\cdot 109 + 5\cdot 109^{2} + 65\cdot 109^{3} +O\left(109^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 85 + 27\cdot 109^{2} + 26\cdot 109^{3} + 9\cdot 109^{4} + 96\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 99 + 62\cdot 109 + 15\cdot 109^{2} + 47\cdot 109^{3} + 49\cdot 109^{4} + 36\cdot 109^{5} +O\left(109^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 103 + 23\cdot 109 + 19\cdot 109^{2} + 109^{3} + 84\cdot 109^{4} + 20\cdot 109^{5} +O\left(109^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.