Properties

Label 2.3_241.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 241 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$723= 3 \cdot 241 $
Artin number field: Splitting field of $f= x^{8} - 7 x^{6} + 97 x^{4} + 336 x^{2} + 2304 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 32 + 157\cdot 181 + 151\cdot 181^{2} + 12\cdot 181^{3} + 166\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 62 + 69\cdot 181 + 107\cdot 181^{2} + 135\cdot 181^{3} + 44\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 80 + 127\cdot 181 + 169\cdot 181^{2} + 101\cdot 181^{3} + 11\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 88 + 59\cdot 181 + 124\cdot 181^{2} + 45\cdot 181^{3} + 47\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 93 + 121\cdot 181 + 56\cdot 181^{2} + 135\cdot 181^{3} + 133\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 101 + 53\cdot 181 + 11\cdot 181^{2} + 79\cdot 181^{3} + 169\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 119 + 111\cdot 181 + 73\cdot 181^{2} + 45\cdot 181^{3} + 136\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 149 + 23\cdot 181 + 29\cdot 181^{2} + 168\cdot 181^{3} + 14\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.