Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 181 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 23 + 114\cdot 181 + 171\cdot 181^{2} + 75\cdot 181^{3} + 50\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 110 + 68\cdot 181 + 93\cdot 181^{2} + 108\cdot 181^{3} + 20\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 111 + 123\cdot 181 + 161\cdot 181^{2} + 116\cdot 181^{3} + 127\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 119 + 55\cdot 181 + 116\cdot 181^{2} + 60\cdot 181^{3} + 163\cdot 181^{4} +O\left(181^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)$ |
| $(1,3)(2,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $2$ |
$2$ |
$(1,3)(2,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,2)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.