Properties

Label 2.3_23e2.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1587= 3 \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 7 x^{6} - 12 x^{5} - 8 x^{4} + 84 x^{3} + 159 x^{2} + 63 x + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 90\cdot 139 + 24\cdot 139^{2} + 123\cdot 139^{3} + 123\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 16\cdot 139 + 19\cdot 139^{2} + 16\cdot 139^{3} + 56\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 40 + 60\cdot 139 + 101\cdot 139^{2} + 96\cdot 139^{3} + 94\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 + 43\cdot 139 + 56\cdot 139^{2} + 82\cdot 139^{3} + 129\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 + 23\cdot 139 + 64\cdot 139^{2} + 24\cdot 139^{3} + 88\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 64 + 90\cdot 139 + 36\cdot 139^{2} + 105\cdot 139^{3} + 117\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 78 + 59\cdot 139 + 103\cdot 139^{2} + 125\cdot 139^{3} + 128\cdot 139^{4} +O\left(139^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 111 + 33\cdot 139 + 11\cdot 139^{2} + 121\cdot 139^{3} + 94\cdot 139^{4} +O\left(139^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,8)(5,7)$
$(1,4,2,8)(3,7,6,5)$
$(1,3)(2,6)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,6)(4,8)(5,7)$ $-2$
$2$ $2$ $(1,3)(2,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,7)(2,5)(3,4)(6,8)$ $0$
$2$ $4$ $(1,4,2,8)(3,7,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.