Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 139 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 10 + 36\cdot 139 + 118\cdot 139^{2} + 69\cdot 139^{3} + 19\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 58 + 32\cdot 139 + 83\cdot 139^{2} + 17\cdot 139^{3} + 104\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 98 + 127\cdot 139 + 12\cdot 139^{2} + 58\cdot 139^{3} + 59\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 113 + 81\cdot 139 + 63\cdot 139^{2} + 132\cdot 139^{3} + 94\cdot 139^{4} +O\left(139^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,4)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)$ | $0$ |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.