Properties

Label 2.3_233.5t2.1
Dimension 2
Group $D_{5}$
Conductor $ 3 \cdot 233 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{5}$
Conductor:$699= 3 \cdot 233 $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - x^{3} + 8 x^{2} + 3 x - 6 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{5}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 11 a + 9 + \left(5 a + 18\right)\cdot 23 + \left(18 a + 16\right)\cdot 23^{2} + \left(17 a + 5\right)\cdot 23^{3} + \left(18 a + 21\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 18 + 4\cdot 23 + 17\cdot 23^{2} + 23^{3} + 2\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 22 a\cdot 23 + \left(21 a + 6\right)\cdot 23^{2} + \left(4 a + 2\right)\cdot 23^{3} + \left(20 a + 19\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 13 + 4\cdot 23 + \left(a + 4\right)\cdot 23^{2} + \left(18 a + 13\right)\cdot 23^{3} + \left(2 a + 8\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 8 + \left(17 a + 18\right)\cdot 23 + \left(4 a + 1\right)\cdot 23^{2} + 5 a\cdot 23^{3} + \left(4 a + 18\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3)(2,5)$
$(1,2)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$5$ $2$ $(1,3)(2,5)$ $0$ $0$
$2$ $5$ $(1,5,4,2,3)$ $\zeta_{5}^{3} + \zeta_{5}^{2}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$
$2$ $5$ $(1,4,3,5,2)$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - 1$ $\zeta_{5}^{3} + \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.