Properties

Label 2.3_2221.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 2221 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$6663= 3 \cdot 2221 $
Artin number field: Splitting field of $f= x^{8} + 47 x^{6} + 2212 x^{4} - 141 x^{2} + 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 139 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 6 + 103\cdot 139 + 78\cdot 139^{2} + 67\cdot 139^{3} + 125\cdot 139^{4} + 116\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 9 + 16\cdot 139 + 126\cdot 139^{2} + 121\cdot 139^{3} + 51\cdot 139^{4} + 34\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 20 + 31\cdot 139 + 32\cdot 139^{2} + 17\cdot 139^{3} + 4\cdot 139^{4} + 108\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 39 + 41\cdot 139 + 86\cdot 139^{2} + 37\cdot 139^{3} + 65\cdot 139^{4} + 18\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 100 + 97\cdot 139 + 52\cdot 139^{2} + 101\cdot 139^{3} + 73\cdot 139^{4} + 120\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 119 + 107\cdot 139 + 106\cdot 139^{2} + 121\cdot 139^{3} + 134\cdot 139^{4} + 30\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 130 + 122\cdot 139 + 12\cdot 139^{2} + 17\cdot 139^{3} + 87\cdot 139^{4} + 104\cdot 139^{5} +O\left(139^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 133 + 35\cdot 139 + 60\cdot 139^{2} + 71\cdot 139^{3} + 13\cdot 139^{4} + 22\cdot 139^{5} +O\left(139^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(3,5,6,4)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,4)(2,6)(3,7)(5,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.