Properties

Label 2.3_19e2.12t18.3c2
Dimension 2
Group $C_6\times S_3$
Conductor $ 3 \cdot 19^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_6\times S_3$
Conductor:$1083= 3 \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{12} - 2 x^{11} + 5 x^{10} - 11 x^{9} + 18 x^{8} - 43 x^{7} + 54 x^{6} - 60 x^{5} + 172 x^{4} - 261 x^{3} + 191 x^{2} - 106 x + 43 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_6\times S_3$
Parity: Odd
Determinant: 1.3_19.6t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{6} + 2 x^{4} + 10 x^{2} + 3 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 11 a^{5} + 3 a^{4} + 16 a^{3} + 2 a + 4 + \left(16 a^{5} + 5 a^{4} + 8 a^{3} + 8 a^{2} + 13 a + 12\right)\cdot 17 + \left(16 a^{5} + 16 a^{3} + 7 a^{2} + a + 3\right)\cdot 17^{2} + \left(10 a^{5} + 16 a^{4} + 12 a^{3} + 7 a^{2} + a + 10\right)\cdot 17^{3} + \left(3 a^{5} + a^{4} + 10 a^{3} + 8 a + 5\right)\cdot 17^{4} + \left(11 a^{5} + 16 a^{4} + 5 a^{2} + 9 a + 15\right)\cdot 17^{5} + \left(14 a^{4} + 5 a^{3} + 8 a^{2} + 13 a + 1\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 3 a^{5} + 2 a^{4} + a^{3} + 7 a^{2} + 12 a + 6 + \left(10 a^{5} + 15 a^{4} + 6 a^{3} + 10 a^{2} + 6 a + 5\right)\cdot 17 + \left(4 a^{5} + 14 a^{4} + 16 a^{3} + 10 a^{2} + 11 a + 7\right)\cdot 17^{2} + \left(13 a^{5} + 6 a^{4} + 10 a^{3} + 15 a^{2} + 2 a + 9\right)\cdot 17^{3} + \left(a^{5} + 10 a^{4} + 3 a^{3} + 2 a^{2} + 9 a + 16\right)\cdot 17^{4} + \left(14 a^{5} + 15 a^{4} + 5 a^{3} + 3 a^{2} + 5 a + 12\right)\cdot 17^{5} + \left(4 a^{5} + 4 a^{3} + 14 a^{2} + 5 a + 3\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 6 a^{5} + 3 a^{4} + 4 a^{3} + 4 a^{2} + 10 a + 14 + \left(4 a^{5} + 8 a^{4} + 10 a^{3} + 14 a^{2} + 12 a + 15\right)\cdot 17 + \left(7 a^{5} + 14 a^{3} + 6 a^{2} + 14 a + 13\right)\cdot 17^{2} + \left(10 a^{5} + 13 a^{4} + 4 a^{3} + 16 a^{2} + 16 a + 15\right)\cdot 17^{3} + \left(3 a^{5} + 5 a^{4} + 3 a^{3} + 16 a^{2} + 3 a + 2\right)\cdot 17^{4} + \left(12 a^{5} + 3 a^{4} + 5 a^{3} + 15 a^{2} + 5 a + 5\right)\cdot 17^{5} + \left(7 a^{5} + 7 a^{4} + 13 a^{3} + 14 a^{2} + 7 a + 5\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 6 a^{4} + 6 a^{3} + 13 a^{2} + 11 a + 4 + \left(16 a^{5} + 12 a^{4} + 5 a^{3} + 14 a^{2} + 5\right)\cdot 17 + \left(14 a^{5} + 11 a^{4} + a^{3} + 16 a^{2} + 10 a + 6\right)\cdot 17^{2} + \left(16 a^{5} + 11 a^{4} + 13 a^{3} + 2 a^{2} + 11 a + 7\right)\cdot 17^{3} + \left(7 a^{5} + 16 a^{4} + 3 a^{3} + 3 a^{2} + 12 a + 3\right)\cdot 17^{4} + \left(7 a^{5} + 15 a^{4} + 10 a^{3} + 16 a^{2} + 4\right)\cdot 17^{5} + \left(14 a^{5} + 6 a^{4} + 10 a^{2} + 13 a + 15\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{5} + 12 a^{4} + 10 a^{3} + 11 a^{2} + 3 a + 16 + \left(a^{5} + 16 a^{4} + 16 a^{3} + 10 a^{2} + a + 5\right)\cdot 17 + \left(16 a^{5} + 9 a^{4} + a^{3} + 8 a^{2} + 14 a + 11\right)\cdot 17^{2} + \left(3 a^{5} + 2 a^{4} + 13 a^{3} + a^{2} + 9 a + 7\right)\cdot 17^{3} + \left(15 a^{5} + 8 a^{4} + 11 a^{2} + 16 a + 12\right)\cdot 17^{4} + \left(12 a^{5} + 11 a^{4} + a^{3} + 14 a^{2} + 12 a + 9\right)\cdot 17^{5} + \left(9 a^{5} + 11 a^{4} + 10 a^{3} + 12 a^{2} + 15 a + 4\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 9 a^{5} + 3 a^{4} + 3 a^{3} + 4 a + 16 + \left(14 a^{5} + 10 a^{4} + 16 a^{3} + 9 a^{2} + 6 a + 5\right)\cdot 17 + \left(2 a^{5} + 4 a^{4} + 12 a^{3} + 5 a^{2} + 4 a + 1\right)\cdot 17^{2} + \left(7 a^{5} + 7 a^{4} + 10 a^{3} + 16 a^{2} + 16 a + 8\right)\cdot 17^{3} + \left(11 a^{5} + 9 a^{4} + 6 a^{3} + 11 a^{2} + 4 a + 7\right)\cdot 17^{4} + \left(7 a^{5} + 5 a^{4} + 12 a^{3} + 10 a^{2} + 5 a + 13\right)\cdot 17^{5} + \left(12 a^{5} + 12 a^{4} + 16 a^{3} + 13 a^{2} + a + 6\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 7 }$ $=$ $ a^{5} + 6 a^{4} + 14 a^{3} + 4 a^{2} + 10 a + 9 + \left(9 a^{4} + a^{3} + 12 a^{2} + 4 a + 1\right)\cdot 17 + \left(15 a^{5} + a^{4} + 14 a^{3} + 15 a^{2} + 13 a + 8\right)\cdot 17^{2} + \left(4 a^{5} + 4 a^{4} + 6 a^{3} + 5 a^{2} + 4 a + 12\right)\cdot 17^{3} + \left(15 a^{5} + 12 a^{4} + 13 a^{3} + 1\right)\cdot 17^{4} + \left(11 a^{5} + 10 a^{4} + 14 a^{3} + 12 a^{2} + 15 a + 7\right)\cdot 17^{5} + \left(9 a^{5} + 14 a^{4} + 15 a^{3} + 7 a^{2} + 14 a + 5\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 15 a^{5} + 2 a^{4} + 9 a^{3} + 14 a^{2} + 2 a + 1 + \left(7 a^{5} + 3 a^{4} + 15 a^{3} + 7 a^{2} + 16\right)\cdot 17 + \left(13 a^{5} + 3 a^{4} + 10 a^{3} + 11 a + 16\right)\cdot 17^{2} + \left(a^{5} + 9 a^{4} + 9 a^{3} + a^{2} + 9 a + 5\right)\cdot 17^{3} + \left(16 a^{5} + 16 a^{4} + 13 a^{3} + 3 a^{2} + 16 a + 14\right)\cdot 17^{4} + \left(3 a^{5} + 8 a^{3} + 11 a^{2} + 3 a + 16\right)\cdot 17^{5} + \left(2 a^{5} + 6 a^{4} + 15 a^{3} + 13 a + 9\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 10 a^{5} + 8 a^{4} + a^{3} + 5 a^{2} + 2 a + 6 + \left(14 a^{5} + 14 a^{4} + 10 a^{3} + 5 a^{2} + 14 a + 12\right)\cdot 17 + \left(2 a^{5} + 8 a^{4} + 3 a^{3} + 4 a^{2} + 12 a + 14\right)\cdot 17^{2} + \left(4 a^{5} + 6 a^{4} + 13 a^{3} + 5 a^{2} + 2 a + 11\right)\cdot 17^{3} + \left(a^{5} + 11 a^{4} + 4 a^{3} + 16 a^{2} + 16 a + 6\right)\cdot 17^{4} + \left(6 a^{5} + 4 a^{4} + a^{3} + 12 a^{2} + 4 a + 3\right)\cdot 17^{5} + \left(5 a^{5} + 8 a^{4} + 2 a^{3} + 10 a^{2} + 3 a + 5\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 10 }$ $=$ $ 8 a^{4} + 8 a^{3} + 15 a^{2} + 11 a + 16 + \left(4 a^{5} + 7 a^{4} + 15 a^{3} + 15 a^{2} + 5 a\right)\cdot 17 + \left(11 a^{5} + 8 a^{4} + 4 a^{3} + a^{2} + 16 a + 12\right)\cdot 17^{2} + \left(16 a^{4} + 3 a^{3} + 8 a^{2} + 6 a + 15\right)\cdot 17^{3} + \left(9 a^{5} + 2 a^{4} + 3 a^{3} + 12 a^{2} + 6 a + 9\right)\cdot 17^{4} + \left(2 a^{5} + 14 a^{4} + 13 a^{3} + 12 a^{2} + 15 a + 2\right)\cdot 17^{5} + \left(11 a^{5} + 13 a^{4} + 14 a^{3} + 5 a\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 11 }$ $=$ $ 16 a^{5} + 9 a^{4} + a^{3} + 15 a^{2} + 5 a + 16 + \left(14 a^{5} + a^{4} + 2 a^{3} + a^{2} + 8 a + 9\right)\cdot 17 + \left(a^{5} + 4 a^{4} + 8 a^{3} + 8 a^{2} + 16 a + 3\right)\cdot 17^{2} + \left(16 a^{5} + 12 a^{4} + 14 a^{3} + 2 a^{2} + 5 a + 5\right)\cdot 17^{3} + \left(15 a^{5} + a^{4} + 8 a^{3} + 16 a^{2}\right)\cdot 17^{4} + \left(13 a^{5} + 13 a^{4} + 3 a^{3} + 4 a^{2} + 4 a + 6\right)\cdot 17^{5} + \left(6 a^{5} + 2 a^{4} + 7 a^{2} + 5 a + 8\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$
$r_{ 12 }$ $=$ $ 9 a^{5} + 6 a^{4} + 12 a^{3} + 14 a^{2} + 13 a + 13 + \left(14 a^{5} + 15 a^{4} + 10 a^{3} + 8 a^{2} + 11 a + 10\right)\cdot 17 + \left(11 a^{5} + 16 a^{4} + 13 a^{3} + 15 a^{2} + 9 a + 2\right)\cdot 17^{2} + \left(11 a^{5} + 12 a^{4} + 5 a^{3} + a^{2} + 13 a + 9\right)\cdot 17^{3} + \left(4 a^{4} + 12 a^{3} + 7 a^{2} + 6 a + 3\right)\cdot 17^{4} + \left(15 a^{5} + 7 a^{4} + 8 a^{3} + 16 a^{2} + 2 a + 5\right)\cdot 17^{5} + \left(16 a^{5} + 2 a^{4} + 3 a^{3} + 16 a^{2} + 3 a + 1\right)\cdot 17^{6} +O\left(17^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,2,5)(3,12,10)(4,9,6)(7,8,11)$
$(3,10,12)(7,11,8)$
$(1,9)(2,6)(3,7)(4,5)(8,12)(10,11)$
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,9)(2,6)(3,7)(4,5)(8,12)(10,11)$$-2$
$3$$2$$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$$0$
$3$$2$$(1,3)(2,12)(4,11)(5,10)(6,8)(7,9)$$0$
$1$$3$$(1,2,5)(3,12,10)(4,9,6)(7,8,11)$$-2 \zeta_{3} - 2$
$1$$3$$(1,5,2)(3,10,12)(4,6,9)(7,11,8)$$2 \zeta_{3}$
$2$$3$$(3,10,12)(7,11,8)$$\zeta_{3} + 1$
$2$$3$$(3,12,10)(7,8,11)$$-\zeta_{3}$
$2$$3$$(1,5,2)(3,12,10)(4,6,9)(7,8,11)$$-1$
$1$$6$$(1,6,5,9,2,4)(3,8,10,7,12,11)$$2 \zeta_{3} + 2$
$1$$6$$(1,4,2,9,5,6)(3,11,12,7,10,8)$$-2 \zeta_{3}$
$2$$6$$(1,9)(2,6)(3,11,12,7,10,8)(4,5)$$-\zeta_{3} - 1$
$2$$6$$(1,9)(2,6)(3,8,10,7,12,11)(4,5)$$\zeta_{3}$
$2$$6$$(1,4,2,9,5,6)(3,8,10,7,12,11)$$1$
$3$$6$$(1,8,5,7,2,11)(3,6,10,9,12,4)$$0$
$3$$6$$(1,11,2,7,5,8)(3,4,12,9,10,6)$$0$
$3$$6$$(1,12,5,3,2,10)(4,7,6,11,9,8)$$0$
$3$$6$$(1,10,2,3,5,12)(4,8,9,11,6,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.