Properties

Label 2.3_19_67.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 19 \cdot 67 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3819= 3 \cdot 19 \cdot 67 $
Artin number field: Splitting field of $f= x^{8} + 29 x^{6} + 949 x^{4} - 3132 x^{2} + 11664 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_19_67.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 39\cdot 79 + 43\cdot 79^{2} + 51\cdot 79^{3} + 16\cdot 79^{4} + 67\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 13 + 9\cdot 79 + 39\cdot 79^{2} + 34\cdot 79^{3} + 38\cdot 79^{4} + 36\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 17 + 75\cdot 79 + 70\cdot 79^{2} + 46\cdot 79^{3} + 75\cdot 79^{4} + 51\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 33 + 15\cdot 79 + 31\cdot 79^{2} + 65\cdot 79^{3} + 68\cdot 79^{4} + 15\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 46 + 63\cdot 79 + 47\cdot 79^{2} + 13\cdot 79^{3} + 10\cdot 79^{4} + 63\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 62 + 3\cdot 79 + 8\cdot 79^{2} + 32\cdot 79^{3} + 3\cdot 79^{4} + 27\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 66 + 69\cdot 79 + 39\cdot 79^{2} + 44\cdot 79^{3} + 40\cdot 79^{4} + 42\cdot 79^{5} +O\left(79^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 77 + 39\cdot 79 + 35\cdot 79^{2} + 27\cdot 79^{3} + 62\cdot 79^{4} + 11\cdot 79^{5} +O\left(79^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,5)(2,3)(4,8)(6,7)$$0$
$2$$4$$(1,3,8,6)(2,5,7,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.