Properties

Label 2.3_193.8t6.2c1
Dimension 2
Group $D_{8}$
Conductor $ 3 \cdot 193 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$579= 3 \cdot 193 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 6 x^{6} - 15 x^{5} + 29 x^{4} - 30 x^{3} + 24 x^{2} - 24 x + 16 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.3_193.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 4 + 138\cdot 151 + 113\cdot 151^{2} + 53\cdot 151^{3} + 32\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 69\cdot 151 + 73\cdot 151^{2} + 134\cdot 151^{3} + 121\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 56 + 97\cdot 151 + 136\cdot 151^{2} + 93\cdot 151^{3} + 121\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 71 + 2\cdot 151 + 68\cdot 151^{2} + 78\cdot 151^{3} + 132\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 76 + 20\cdot 151 + 90\cdot 151^{2} + 60\cdot 151^{3} + 70\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 113 + 105\cdot 151 + 4\cdot 151^{2} + 87\cdot 151^{3} + 108\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 117 + 81\cdot 151 + 68\cdot 151^{2} + 80\cdot 151^{3} + 141\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 143 + 88\cdot 151 + 48\cdot 151^{2} + 15\cdot 151^{3} + 26\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,6)(5,7)$
$(1,8,5,6)(2,4,3,7)$
$(1,5)(2,3)(4,7)(6,8)$
$(1,2,8,4,5,3,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,7)(6,8)$$-2$
$4$$2$$(1,8)(4,7)(5,6)$$0$
$4$$2$$(1,4)(2,8)(3,6)(5,7)$$0$
$2$$4$$(1,8,5,6)(2,4,3,7)$$0$
$2$$8$$(1,2,8,4,5,3,6,7)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,4,6,2,5,7,8,3)$$\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.