Properties

Label 2.3_193.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 193 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$579= 3 \cdot 193 $
Artin number field: Splitting field of $f= x^{8} + x^{6} + 49 x^{4} - 48 x^{2} + 2304 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 31\cdot 67 + 66\cdot 67^{2} + 48\cdot 67^{3} + 10\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 + 2\cdot 67 + 60\cdot 67^{2} + 54\cdot 67^{3} + 57\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 7 + 54\cdot 67 + 63\cdot 67^{2} + 65\cdot 67^{3} + 17\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 + 45\cdot 67 + 55\cdot 67^{2} + 9\cdot 67^{3} + 60\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 51 + 21\cdot 67 + 11\cdot 67^{2} + 57\cdot 67^{3} + 6\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 60 + 12\cdot 67 + 3\cdot 67^{2} + 67^{3} + 49\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 62 + 64\cdot 67 + 6\cdot 67^{2} + 12\cdot 67^{3} + 9\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 65 + 35\cdot 67 + 18\cdot 67^{3} + 56\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.