Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 47 + 19\cdot 67 + 14\cdot 67^{2} + 30\cdot 67^{3} + 64\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 48 + 32\cdot 67 + 26\cdot 67^{2} + 28\cdot 67^{3} + 58\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 50 + 57\cdot 67 + 7\cdot 67^{2} + 36\cdot 67^{3} + 44\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 57 + 23\cdot 67 + 18\cdot 67^{2} + 39\cdot 67^{3} + 33\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(1,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,3)(2,4)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,3,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.