Properties

Label 2.3_181.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3 \cdot 181 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$543= 3 \cdot 181 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} + 2 x^{3} - 5 x^{2} + x + 7 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 11 a + 1 + \left(7 a + 22\right)\cdot 29 + \left(14 a + 1\right)\cdot 29^{2} + \left(26 a + 13\right)\cdot 29^{3} + \left(a + 18\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 a + 23 + \left(4 a + 15\right)\cdot 29 + \left(2 a + 27\right)\cdot 29^{2} + \left(7 a + 25\right)\cdot 29^{3} + \left(9 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 18 + \left(24 a + 12\right)\cdot 29 + \left(26 a + 4\right)\cdot 29^{2} + \left(21 a + 1\right)\cdot 29^{3} + \left(19 a + 26\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 1 + \left(14 a + 14\right)\cdot 29 + \left(26 a + 7\right)\cdot 29^{2} + \left(8 a + 21\right)\cdot 29^{3} + \left(8 a + 10\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 27 + \left(21 a + 18\right)\cdot 29 + \left(14 a + 7\right)\cdot 29^{2} + \left(2 a + 15\right)\cdot 29^{3} + \left(27 a + 1\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 20 + \left(14 a + 3\right)\cdot 29 + \left(2 a + 9\right)\cdot 29^{2} + \left(20 a + 10\right)\cdot 29^{3} + \left(20 a + 14\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,3)$
$(2,4,5)$
$(1,5)(2,3)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,5)(2,3)(4,6)$ $0$ $0$
$1$ $3$ $(1,6,3)(2,5,4)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,3,6)(2,4,5)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,6,3)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,3,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,6,3)(2,4,5)$ $-1$ $-1$
$3$ $6$ $(1,4,6,2,3,5)$ $0$ $0$
$3$ $6$ $(1,5,3,2,6,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.