Properties

Label 2.3_17e2.3t2.1
Dimension 2
Group $S_3$
Conductor $ 3 \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3$
Conductor:$867= 3 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{3} - x^{2} + 6 x - 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 37 + 63\cdot 73 + 50\cdot 73^{2} + 58\cdot 73^{3} + 51\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 46 + 27\cdot 73 + 5\cdot 73^{2} + 52\cdot 73^{3} + 21\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 64 + 54\cdot 73 + 16\cdot 73^{2} + 35\cdot 73^{3} + 72\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character values
$c1$
$1$ $1$ $()$ $2$
$3$ $2$ $(1,2)$ $0$
$2$ $3$ $(1,2,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.