Properties

Label 2.3_157.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 157 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$471= 3 \cdot 157 $
Artin number field: Splitting field of $f= x^{8} + 7 x^{6} + 76 x^{4} - 189 x^{2} + 729 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_157.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 63\cdot 67 + 65\cdot 67^{2} + 3\cdot 67^{3} + 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 15\cdot 67 + 14\cdot 67^{2} + 20\cdot 67^{3} + 33\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 + 3\cdot 67 + 40\cdot 67^{2} + 13\cdot 67^{3} + 60\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 3\cdot 67 + 47\cdot 67^{2} + 46\cdot 67^{3} + 9\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 + 63\cdot 67 + 19\cdot 67^{2} + 20\cdot 67^{3} + 57\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 56 + 63\cdot 67 + 26\cdot 67^{2} + 53\cdot 67^{3} + 6\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 57 + 51\cdot 67 + 52\cdot 67^{2} + 46\cdot 67^{3} + 33\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 62 + 3\cdot 67 + 67^{2} + 63\cdot 67^{3} + 65\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.