Properties

Label 2.3_1549.4t3.1c1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 1549 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$4647= 3 \cdot 1549 $
Artin number field: Splitting field of $f= x^{4} - 31 x^{2} - 147 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_1549.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 28\cdot 43 + 31\cdot 43^{2} + 5\cdot 43^{3} + 11\cdot 43^{4} + 39\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 12 + 21\cdot 43 + 6\cdot 43^{2} + 25\cdot 43^{3} + 24\cdot 43^{4} + 11\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 31 + 21\cdot 43 + 36\cdot 43^{2} + 17\cdot 43^{3} + 18\cdot 43^{4} + 31\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 39 + 14\cdot 43 + 11\cdot 43^{2} + 37\cdot 43^{3} + 31\cdot 43^{4} + 3\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.