Properties

Label 2.3_1489.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 1489 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4467= 3 \cdot 1489 $
Artin number field: Splitting field of $f= x^{8} + 17 x^{6} + 589 x^{4} - 5100 x^{2} + 90000 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 1 + 17\cdot 37 + 14\cdot 37^{2} + 32\cdot 37^{3} + 17\cdot 37^{4} + 32\cdot 37^{5} + 25\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 10 + 6\cdot 37 + 10\cdot 37^{2} + 23\cdot 37^{3} + 12\cdot 37^{4} + 33\cdot 37^{5} + 30\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 12 + 36\cdot 37 + 14\cdot 37^{2} + 20\cdot 37^{3} + 23\cdot 37^{4} + 12\cdot 37^{5} + 35\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 16 + 14\cdot 37 + 18\cdot 37^{2} + 17\cdot 37^{3} + 13\cdot 37^{4} + 13\cdot 37^{5} + 19\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 21 + 22\cdot 37 + 18\cdot 37^{2} + 19\cdot 37^{3} + 23\cdot 37^{4} + 23\cdot 37^{5} + 17\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 25 + 22\cdot 37^{2} + 16\cdot 37^{3} + 13\cdot 37^{4} + 24\cdot 37^{5} + 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 27 + 30\cdot 37 + 26\cdot 37^{2} + 13\cdot 37^{3} + 24\cdot 37^{4} + 3\cdot 37^{5} + 6\cdot 37^{6} +O\left(37^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 36 + 19\cdot 37 + 22\cdot 37^{2} + 4\cdot 37^{3} + 19\cdot 37^{4} + 4\cdot 37^{5} + 11\cdot 37^{6} +O\left(37^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.