Properties

Label 2.3_13e2_97.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 13^{2} \cdot 97 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$49179= 3 \cdot 13^{2} \cdot 97 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 61 x^{2} + 16 x + 1036 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_97.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 26\cdot 31 + 16\cdot 31^{2} + 24\cdot 31^{3} + 13\cdot 31^{4} + 16\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 7 + 14\cdot 31 + 2\cdot 31^{2} + 8\cdot 31^{3} + 19\cdot 31^{4} + 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 + 21\cdot 31 + 20\cdot 31^{2} + 28\cdot 31^{3} + 29\cdot 31^{4} + 15\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 30 + 30\cdot 31 + 21\cdot 31^{2} + 30\cdot 31^{4} + 27\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.