Properties

Label 2.3_13e2.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$507= 3 \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 9 x^{6} + 32 x^{4} - 9 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 100\cdot 127 + 38\cdot 127^{2} + 88\cdot 127^{3} + 66\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 52\cdot 127 + 119\cdot 127^{2} + 101\cdot 127^{3} + 125\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 84\cdot 127 + 5\cdot 127^{2} + 26\cdot 127^{3} + 37\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 + 66\cdot 127 + 109\cdot 127^{2} + 17\cdot 127^{3} + 82\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 90 + 60\cdot 127 + 17\cdot 127^{2} + 109\cdot 127^{3} + 44\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 103 + 42\cdot 127 + 121\cdot 127^{2} + 100\cdot 127^{3} + 89\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 106 + 74\cdot 127 + 7\cdot 127^{2} + 25\cdot 127^{3} + 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 121 + 26\cdot 127 + 88\cdot 127^{2} + 38\cdot 127^{3} + 60\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4)(5,8,6,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $-2$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $0$
$2$ $4$ $(1,3,2,4)(5,8,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.