Properties

Label 2.3_13_97e2.4t3.2
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 13 \cdot 97^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$366951= 3 \cdot 13 \cdot 97^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 169 x^{2} + 121 x + 7657 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 11 + 18\cdot 43^{2} + 43^{3} + 37\cdot 43^{4} + 3\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 18 + 33\cdot 43 + 19\cdot 43^{2} + 22\cdot 43^{3} + 25\cdot 43^{4} + 11\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 26 + 9\cdot 43 + 6\cdot 43^{2} + 19\cdot 43^{3} + 12\cdot 43^{4} + 41\cdot 43^{5} +O\left(43^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 32 + 42\cdot 43 + 41\cdot 43^{2} + 42\cdot 43^{3} + 10\cdot 43^{4} + 29\cdot 43^{5} +O\left(43^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,3)$ $0$
$2$ $4$ $(1,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.