Properties

Label 2.3_13_97.4t3.5
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 13 \cdot 97 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3783= 3 \cdot 13 \cdot 97 $
Artin number field: Splitting field of $f= x^{8} + 31 x^{6} + 1036 x^{4} - 2325 x^{2} + 5625 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 7 + 28\cdot 61 + 6\cdot 61^{2} + 18\cdot 61^{3} + 22\cdot 61^{4} + 17\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 26 + 37\cdot 61 + 25\cdot 61^{2} + 53\cdot 61^{3} + 11\cdot 61^{4} + 27\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 28 + 31\cdot 61 + 27\cdot 61^{2} + 30\cdot 61^{3} + 22\cdot 61^{4} + 49\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 30 + 5\cdot 61 + 7\cdot 61^{2} + 2\cdot 61^{3} + 14\cdot 61^{4} + 9\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 31 + 55\cdot 61 + 53\cdot 61^{2} + 58\cdot 61^{3} + 46\cdot 61^{4} + 51\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 33 + 29\cdot 61 + 33\cdot 61^{2} + 30\cdot 61^{3} + 38\cdot 61^{4} + 11\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 35 + 23\cdot 61 + 35\cdot 61^{2} + 7\cdot 61^{3} + 49\cdot 61^{4} + 33\cdot 61^{5} +O\left(61^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 54 + 32\cdot 61 + 54\cdot 61^{2} + 42\cdot 61^{3} + 38\cdot 61^{4} + 43\cdot 61^{5} +O\left(61^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.