Properties

Label 2.3_13_37.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 13 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1443= 3 \cdot 13 \cdot 37 $
Artin number field: Splitting field of $f= x^{8} - 7 x^{6} + 157 x^{4} + 756 x^{2} + 11664 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_13_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 80\cdot 109 + 32\cdot 109^{2} + 4\cdot 109^{3} + 36\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 37 + 34\cdot 109 + 7\cdot 109^{2} + 6\cdot 109^{3} + 5\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 + 22\cdot 109 + 28\cdot 109^{2} + 93\cdot 109^{3} + 68\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 53 + 23\cdot 109 + 12\cdot 109^{2} + 20\cdot 109^{3} + 31\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 56 + 85\cdot 109 + 96\cdot 109^{2} + 88\cdot 109^{3} + 77\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 67 + 86\cdot 109 + 80\cdot 109^{2} + 15\cdot 109^{3} + 40\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 72 + 74\cdot 109 + 101\cdot 109^{2} + 102\cdot 109^{3} + 103\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 96 + 28\cdot 109 + 76\cdot 109^{2} + 104\cdot 109^{3} + 72\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.