Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 13 + 80\cdot 109 + 32\cdot 109^{2} + 4\cdot 109^{3} + 36\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 37 + 34\cdot 109 + 7\cdot 109^{2} + 6\cdot 109^{3} + 5\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 42 + 22\cdot 109 + 28\cdot 109^{2} + 93\cdot 109^{3} + 68\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 53 + 23\cdot 109 + 12\cdot 109^{2} + 20\cdot 109^{3} + 31\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 56 + 85\cdot 109 + 96\cdot 109^{2} + 88\cdot 109^{3} + 77\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 67 + 86\cdot 109 + 80\cdot 109^{2} + 15\cdot 109^{3} + 40\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 72 + 74\cdot 109 + 101\cdot 109^{2} + 102\cdot 109^{3} + 103\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 96 + 28\cdot 109 + 76\cdot 109^{2} + 104\cdot 109^{3} + 72\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3,8,6)(2,4,7,5)$ |
| $(1,2)(3,5)(4,6)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,8,6)(2,4,7,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.