Properties

Label 2.3_13_37.4t3.4c1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 13 \cdot 37 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1443= 3 \cdot 13 \cdot 37 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 10 x^{2} + 7 x + 31 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_13_37.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 22\cdot 31 + 22\cdot 31^{2} + 16\cdot 31^{3} + 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 4\cdot 31 + 23\cdot 31^{2} + 2\cdot 31^{3} + 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 9\cdot 31 + 31^{2} + 6\cdot 31^{3} + 17\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 + 25\cdot 31 + 14\cdot 31^{2} + 5\cdot 31^{3} + 11\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.