Properties

Label 2.3_13_17.6t5.2c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3 \cdot 13 \cdot 17 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$663= 3 \cdot 13 \cdot 17 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} + 9 x^{7} - 33 x^{6} + 74 x^{5} - 108 x^{4} + 100 x^{3} - 58 x^{2} + 17 x - 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3_13_17.6t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ a^{2} + 9 a + 10 + \left(10 a^{2} + 4 a + 2\right)\cdot 11 + \left(8 a^{2} + 8 a + 8\right)\cdot 11^{2} + \left(5 a^{2} + 9 a + 8\right)\cdot 11^{3} + \left(3 a^{2} + 6 a + 7\right)\cdot 11^{4} + \left(4 a^{2} + 5\right)\cdot 11^{5} + \left(a^{2} + 4 a + 10\right)\cdot 11^{6} + \left(7 a^{2} + 5 a + 2\right)\cdot 11^{7} + \left(8 a^{2} + 3 a + 10\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 3 a^{2} + 7 a + 9 + \left(a^{2} + 5 a + 5\right)\cdot 11 + \left(4 a^{2} + 2 a + 5\right)\cdot 11^{2} + \left(2 a^{2} + 4 a\right)\cdot 11^{3} + \left(3 a^{2} + a\right)\cdot 11^{4} + \left(7 a^{2} + 5 a + 6\right)\cdot 11^{5} + \left(7 a^{2} + 10 a\right)\cdot 11^{6} + \left(5 a^{2} + 2 a + 1\right)\cdot 11^{7} + \left(9 a + 3\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 2 a^{2} + a + 1 + \left(6 a^{2} + 10 a + 10\right)\cdot 11 + \left(9 a^{2} + 10 a + 4\right)\cdot 11^{2} + \left(8 a^{2} + 10 a + 6\right)\cdot 11^{3} + \left(7 a^{2} + 3 a + 4\right)\cdot 11^{4} + \left(10 a^{2} + 4 a + 9\right)\cdot 11^{5} + \left(8 a^{2} + 10 a + 9\right)\cdot 11^{6} + \left(10 a^{2} + 2 a + 7\right)\cdot 11^{7} + \left(3 a^{2} + 6 a + 10\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 8 a^{2} + 6 a + 9 + \left(9 a^{2} + 4 a + 3\right)\cdot 11 + \left(7 a^{2} + 3 a + 6\right)\cdot 11^{2} + \left(10 a + 6\right)\cdot 11^{3} + \left(8 a^{2} + 3 a + 8\right)\cdot 11^{4} + \left(7 a^{2} + 5 a + 1\right)\cdot 11^{5} + \left(7 a^{2} + 2 a + 8\right)\cdot 11^{6} + \left(10 a + 1\right)\cdot 11^{7} + \left(3 a^{2} + 6 a + 2\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 5 a^{2} + a + 4 + \left(3 a^{2} + 8 a + 2\right)\cdot 11 + 8\cdot 11^{2} + \left(8 a^{2} + 3 a + 7\right)\cdot 11^{3} + \left(9 a^{2} + 4 a + 4\right)\cdot 11^{4} + \left(10 a^{2} + 4 a + 8\right)\cdot 11^{5} + \left(9 a^{2} + 6\right)\cdot 11^{6} + \left(4 a^{2} + 5 a + 8\right)\cdot 11^{7} + \left(2 a^{2} + 2 a + 2\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 2 a^{2} + 8 a + \left(10 a^{2} + 6 a + 4\right)\cdot 11 + \left(2 a^{2} + 2 a + 4\right)\cdot 11^{2} + \left(9 a^{2} + a + 9\right)\cdot 11^{3} + \left(4 a^{2} + 5 a + 1\right)\cdot 11^{4} + \left(5 a^{2} + 6 a + 1\right)\cdot 11^{5} + \left(a^{2} + 10\right)\cdot 11^{6} + \left(2 a^{2} + 10 a + 4\right)\cdot 11^{7} + \left(9 a + 3\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 7 a^{2} + 6 a + 7 + \left(10 a^{2} + 3\right)\cdot 11 + \left(8 a^{2} + 8\right)\cdot 11^{2} + \left(2 a^{2} + 8 a + 4\right)\cdot 11^{3} + \left(4 a^{2} + 2 a + 1\right)\cdot 11^{4} + \left(10 a^{2} + 5 a + 10\right)\cdot 11^{5} + \left(a^{2} + 7 a + 3\right)\cdot 11^{6} + \left(9 a^{2} + 2 a + 9\right)\cdot 11^{7} + \left(a^{2} + 9 a + 4\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 4 a^{2} + 2 a + 10 + \left(8 a^{2} + 7 a + 8\right)\cdot 11 + \left(7 a^{2} + 7 a + 10\right)\cdot 11^{2} + \left(4 a^{2} + 6 a + 6\right)\cdot 11^{3} + \left(7 a^{2} + a + 1\right)\cdot 11^{4} + \left(5 a^{2} + 5\right)\cdot 11^{5} + \left(10 a^{2} + 10 a + 7\right)\cdot 11^{6} + \left(3 a^{2} + 6 a + 3\right)\cdot 11^{7} + \left(8 a^{2} + 9 a + 3\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 9 }$ $=$ $ a^{2} + 4 a + 7 + \left(6 a^{2} + 7 a + 2\right)\cdot 11 + \left(4 a^{2} + 7 a + 9\right)\cdot 11^{2} + \left(a^{2} + 3\right)\cdot 11^{3} + \left(6 a^{2} + 3 a + 2\right)\cdot 11^{4} + \left(3 a^{2} + a + 7\right)\cdot 11^{5} + \left(5 a^{2} + 9 a + 8\right)\cdot 11^{6} + \left(10 a^{2} + 8 a + 3\right)\cdot 11^{7} + \left(3 a^{2} + 8 a + 3\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,3)(4,5)(6,7)$
$(1,6,8,4,9,2)(3,5,7)$
$(1,5)(3,8)(7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,4)(2,8)(6,9)$$0$
$1$$3$$(1,8,9)(2,6,4)(3,7,5)$$2 \zeta_{3}$
$1$$3$$(1,9,8)(2,4,6)(3,5,7)$$-2 \zeta_{3} - 2$
$2$$3$$(1,7,2)(3,4,9)(5,6,8)$$\zeta_{3} + 1$
$2$$3$$(1,2,7)(3,9,4)(5,8,6)$$-\zeta_{3}$
$2$$3$$(1,4,5)(2,3,8)(6,7,9)$$-1$
$3$$6$$(1,6,8,4,9,2)(3,5,7)$$0$
$3$$6$$(1,2,9,4,8,6)(3,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.