Properties

Label 2.3_13_109.4t3.6
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 13 \cdot 109 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4251= 3 \cdot 13 \cdot 109 $
Artin number field: Splitting field of $f= x^{8} - 35 x^{6} + 1273 x^{4} + 1680 x^{2} + 2304 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 24 + 106\cdot 151 + 74\cdot 151^{2} + 24\cdot 151^{3} + 57\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 + 34\cdot 151 + 75\cdot 151^{2} + 139\cdot 151^{3} + 29\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 46\cdot 151 + 4\cdot 151^{2} + 66\cdot 151^{3} + 86\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 56 + 88\cdot 151 + 33\cdot 151^{2} + 75\cdot 151^{3} + 74\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 95 + 62\cdot 151 + 117\cdot 151^{2} + 75\cdot 151^{3} + 76\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 114 + 104\cdot 151 + 146\cdot 151^{2} + 84\cdot 151^{3} + 64\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 115 + 116\cdot 151 + 75\cdot 151^{2} + 11\cdot 151^{3} + 121\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 127 + 44\cdot 151 + 76\cdot 151^{2} + 126\cdot 151^{3} + 93\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,5)(4,7)(6,8)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.