Properties

Label 2.3_13_109.4t3.5
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 13 \cdot 109 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$4251= 3 \cdot 13 \cdot 109 $
Artin number field: Splitting field of $f= x^{8} + 37 x^{6} + 1381 x^{4} - 444 x^{2} + 144 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 163 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 104\cdot 163 + 155\cdot 163^{2} + 29\cdot 163^{3} + 5\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 151\cdot 163 + 60\cdot 163^{2} + 130\cdot 163^{3} + 82\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 + 79\cdot 163 + 156\cdot 163^{2} + 2\cdot 163^{3} + 122\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 74 + 7\cdot 163 + 120\cdot 163^{2} + 89\cdot 163^{3} + 97\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 89 + 155\cdot 163 + 42\cdot 163^{2} + 73\cdot 163^{3} + 65\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 128 + 83\cdot 163 + 6\cdot 163^{2} + 160\cdot 163^{3} + 40\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 129 + 11\cdot 163 + 102\cdot 163^{2} + 32\cdot 163^{3} + 80\cdot 163^{4} +O\left(163^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 147 + 58\cdot 163 + 7\cdot 163^{2} + 133\cdot 163^{3} + 157\cdot 163^{4} +O\left(163^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8,6)(2,4,7,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $0$
$2$ $4$ $(1,3,8,6)(2,4,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.