Properties

Label 2.3_127.6t5.1c1
Dimension 2
Group $S_3\times C_3$
Conductor $ 3 \cdot 127 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$381= 3 \cdot 127 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} - x^{3} - 5 x^{2} + 4 x + 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd
Determinant: 1.3_127.6t1.1c2

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 1 + \left(13 a + 13\right)\cdot 47 + \left(7 a + 38\right)\cdot 47^{2} + \left(5 a + 30\right)\cdot 47^{3} + \left(7 a + 9\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 a + 33 + \left(35 a + 5\right)\cdot 47 + \left(41 a + 43\right)\cdot 47^{2} + \left(3 a + 28\right)\cdot 47^{3} + \left(14 a + 19\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 4 + \left(33 a + 15\right)\cdot 47 + \left(39 a + 39\right)\cdot 47^{2} + \left(41 a + 33\right)\cdot 47^{3} + \left(39 a + 18\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 26 + \left(11 a + 9\right)\cdot 47 + \left(5 a + 44\right)\cdot 47^{2} + \left(43 a + 41\right)\cdot 47^{3} + \left(32 a + 43\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 32 + \left(29 a + 23\right)\cdot 47 + \left(24 a + 1\right)\cdot 47^{2} + \left(40 a + 45\right)\cdot 47^{3} + \left(40 a + 3\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 1 + \left(17 a + 27\right)\cdot 47 + \left(22 a + 21\right)\cdot 47^{2} + \left(6 a + 7\right)\cdot 47^{3} + \left(6 a + 45\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4)$
$(2,5,3)$
$(1,3,4,2,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$1$$3$$(1,4,6)(2,5,3)$$2 \zeta_{3}$
$1$$3$$(1,6,4)(2,3,5)$$-2 \zeta_{3} - 2$
$2$$3$$(2,5,3)$$\zeta_{3} + 1$
$2$$3$$(2,3,5)$$-\zeta_{3}$
$2$$3$$(1,6,4)(2,5,3)$$-1$
$3$$6$$(1,3,4,2,6,5)$$0$
$3$$6$$(1,5,6,2,4,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.