Properties

Label 2.3_11e2.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$363= 3 \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 2 x^{6} - 3 x^{5} - x^{4} + 6 x^{3} + 8 x^{2} + 8 x + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 81\cdot 97 + 35\cdot 97^{2} + 85\cdot 97^{3} + 49\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 66\cdot 97 + 24\cdot 97^{2} + 15\cdot 97^{3} + 37\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 35\cdot 97 + 21\cdot 97^{2} + 41\cdot 97^{3} + 90\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 + 20\cdot 97 + 76\cdot 97^{2} + 65\cdot 97^{3} + 49\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 + 59\cdot 97 + 21\cdot 97^{2} + 3\cdot 97^{3} + 82\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 + 76\cdot 97 + 36\cdot 97^{2} + 57\cdot 97^{3} + 70\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 69 + 60\cdot 97 + 5\cdot 97^{2} + 96\cdot 97^{3} + 78\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 86 + 85\cdot 97 + 68\cdot 97^{2} + 23\cdot 97^{3} + 26\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,7)(3,6)(5,8)$
$(1,2,5,3)(4,6,8,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $-2$
$2$ $2$ $(1,4)(2,7)(3,6)(5,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $0$
$2$ $4$ $(1,2,5,3)(4,6,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.