Properties

Label 2.3_11_97.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 11 \cdot 97 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$3201= 3 \cdot 11 \cdot 97 $
Artin number field: Splitting field of $f= x^{8} + 61 x^{6} + 979 x^{4} + 1887 x^{2} + 144 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.3_11_97.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 16 + 45\cdot 101 + 69\cdot 101^{2} + 23\cdot 101^{3} + 18\cdot 101^{4} + 83\cdot 101^{5} +O\left(101^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 22 + 22\cdot 101 + 73\cdot 101^{2} + 38\cdot 101^{3} + 90\cdot 101^{4} + 13\cdot 101^{5} +O\left(101^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 28 + 17\cdot 101 + 3\cdot 101^{2} + 90\cdot 101^{3} + 81\cdot 101^{4} + 55\cdot 101^{5} +O\left(101^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 43 + 31\cdot 101 + 75\cdot 101^{2} + 11\cdot 101^{3} + 46\cdot 101^{4} + 19\cdot 101^{5} +O\left(101^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 58 + 69\cdot 101 + 25\cdot 101^{2} + 89\cdot 101^{3} + 54\cdot 101^{4} + 81\cdot 101^{5} +O\left(101^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 73 + 83\cdot 101 + 97\cdot 101^{2} + 10\cdot 101^{3} + 19\cdot 101^{4} + 45\cdot 101^{5} +O\left(101^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 79 + 78\cdot 101 + 27\cdot 101^{2} + 62\cdot 101^{3} + 10\cdot 101^{4} + 87\cdot 101^{5} +O\left(101^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 85 + 55\cdot 101 + 31\cdot 101^{2} + 77\cdot 101^{3} + 82\cdot 101^{4} + 17\cdot 101^{5} +O\left(101^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(3,5,6,4)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.