Properties

Label 2.3_11_97.4t3.4c1
Dimension 2
Group $D_{4}$
Conductor $ 3 \cdot 11 \cdot 97 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$3201= 3 \cdot 11 \cdot 97 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 7 x^{2} + 9 x + 48 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.3_11_97.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 30 + 64\cdot 101 + 12\cdot 101^{2} + 40\cdot 101^{3} + 77\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 + 96\cdot 101 + 69\cdot 101^{2} + 91\cdot 101^{3} + 13\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 57 + 50\cdot 101 + 18\cdot 101^{2} + 28\cdot 101^{3} + 4\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 61 + 91\cdot 101 + 100\cdot 101^{2} + 41\cdot 101^{3} + 5\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.