Properties

Label 2.3_11_359.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 11 \cdot 359 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$11847= 3 \cdot 11 \cdot 359 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 52 x^{6} + 170 x^{5} + 839 x^{4} - 1966 x^{3} + 7900 x^{2} - 6888 x + 10272 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.3_11_359.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 88\cdot 107 + 33\cdot 107^{2} + 38\cdot 107^{3} + 23\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 1 + 19\cdot 107 + 73\cdot 107^{2} + 68\cdot 107^{3} + 83\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 57\cdot 107 + 64\cdot 107^{2} + 51\cdot 107^{3} + 73\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 + 87\cdot 107 + 60\cdot 107^{2} + 39\cdot 107^{3} + 56\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 51 + 50\cdot 107 + 15\cdot 107^{2} + 54\cdot 107^{3} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 57 + 56\cdot 107 + 91\cdot 107^{2} + 52\cdot 107^{3} + 106\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 69 + 19\cdot 107 + 46\cdot 107^{2} + 67\cdot 107^{3} + 50\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 90 + 49\cdot 107 + 42\cdot 107^{2} + 55\cdot 107^{3} + 33\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,8)(5,6)$
$(1,3)(2,8)(4,6)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,4)(7,8)$$-2$
$2$$2$$(1,2)(3,7)(4,8)(5,6)$$0$
$2$$2$$(1,3)(2,8)(4,6)(5,7)$$0$
$2$$4$$(1,8,6,7)(2,3,5,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.