Properties

Label 2.3_113.6t3.1
Dimension 2
Group $D_{6}$
Conductor $ 3 \cdot 113 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$339= 3 \cdot 113 $
Artin number field: Splitting field of $f= x^{6} - 4 x^{4} + 4 x^{2} + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 14\cdot 19 + 15\cdot 19^{2} + 8\cdot 19^{3} + 15\cdot 19^{4} + 5\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 6 + \left(4 a + 12\right)\cdot 19 + \left(9 a + 8\right)\cdot 19^{2} + \left(a + 18\right)\cdot 19^{3} + \left(12 a + 5\right)\cdot 19^{4} + \left(7 a + 18\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 8 + \left(4 a + 7\right)\cdot 19 + \left(9 a + 5\right)\cdot 19^{2} + \left(a + 8\right)\cdot 19^{3} + \left(12 a + 2\right)\cdot 19^{4} + \left(7 a + 5\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 17 + 4\cdot 19 + 3\cdot 19^{2} + 10\cdot 19^{3} + 3\cdot 19^{4} + 13\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 14 a + 13 + \left(14 a + 6\right)\cdot 19 + \left(9 a + 10\right)\cdot 19^{2} + 17 a\cdot 19^{3} + \left(6 a + 13\right)\cdot 19^{4} + 11 a\cdot 19^{5} +O\left(19^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 11 + \left(14 a + 11\right)\cdot 19 + \left(9 a + 13\right)\cdot 19^{2} + \left(17 a + 10\right)\cdot 19^{3} + \left(6 a + 16\right)\cdot 19^{4} + \left(11 a + 13\right)\cdot 19^{5} +O\left(19^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)(3,4,5)$
$(1,3)(2,5)(4,6)$
$(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,3)(2,5)(4,6)$ $0$
$3$ $2$ $(2,6)(3,5)$ $0$
$2$ $3$ $(1,2,6)(3,4,5)$ $-1$
$2$ $6$ $(1,3,2,4,6,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.