Properties

Label 2.3_109.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 3 \cdot 109 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$327= 3 \cdot 109 $
Artin number field: Splitting field of $f= x^{6} - x^{3} - 27 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.3_109.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 24\cdot 29 + 20\cdot 29^{2} + 2\cdot 29^{3} + 23\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 28 + \left(4 a + 25\right)\cdot 29 + \left(16 a + 25\right)\cdot 29^{2} + \left(14 a + 3\right)\cdot 29^{3} + 17 a\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 16 + \left(20 a + 7\right)\cdot 29 + \left(8 a + 7\right)\cdot 29^{2} + \left(3 a + 9\right)\cdot 29^{3} + \left(26 a + 26\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 + 3\cdot 29 + 17\cdot 29^{2} + 22\cdot 29^{3} + 13\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 11 + \left(8 a + 26\right)\cdot 29 + 20 a\cdot 29^{2} + \left(25 a + 17\right)\cdot 29^{3} + \left(2 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 17 + \left(24 a + 28\right)\cdot 29 + \left(12 a + 14\right)\cdot 29^{2} + \left(14 a + 2\right)\cdot 29^{3} + \left(11 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,6)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,6)$$-2$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$3$$2$$(1,5)(4,6)$$0$
$2$$3$$(1,3,5)(2,6,4)$$-1$
$2$$6$$(1,6,3,4,5,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.