Properties

Label 2.3_109.6t3.1c1
Dimension 2
Group $D_{6}$
Conductor $ 3 \cdot 109 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$327= 3 \cdot 109 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 2 x^{4} + 9 x^{3} + x^{2} - 6 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.3_109.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 11 a + 12 + \left(12 a + 7\right)\cdot 13 + \left(a + 2\right)\cdot 13^{2} + \left(10 a + 8\right)\cdot 13^{3} + 5\cdot 13^{4} + \left(7 a + 5\right)\cdot 13^{5} + \left(6 a + 8\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 10 + 9\cdot 13 + \left(11 a + 4\right)\cdot 13^{2} + \left(2 a + 3\right)\cdot 13^{3} + \left(12 a + 9\right)\cdot 13^{4} + \left(5 a + 11\right)\cdot 13^{5} + \left(6 a + 7\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 4 + \left(12 a + 3\right)\cdot 13 + \left(a + 8\right)\cdot 13^{2} + \left(10 a + 9\right)\cdot 13^{3} + 3\cdot 13^{4} + \left(7 a + 1\right)\cdot 13^{5} + \left(6 a + 5\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 9 + 6\cdot 13 + 12\cdot 13^{2} + 10\cdot 13^{3} + 5\cdot 13^{4} + 11\cdot 13^{5} +O\left(13^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 2 + 5\cdot 13 + \left(11 a + 10\right)\cdot 13^{2} + \left(2 a + 4\right)\cdot 13^{3} + \left(12 a + 7\right)\cdot 13^{4} + \left(5 a + 7\right)\cdot 13^{5} + \left(6 a + 4\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 5 + 6\cdot 13 + 2\cdot 13^{3} + 7\cdot 13^{4} + 13^{5} + 12\cdot 13^{6} +O\left(13^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(1,2)(3,5)$
$(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,6)$$-2$
$3$$2$$(1,2)(3,5)$$0$
$3$$2$$(1,3)(2,5)(4,6)$$0$
$2$$3$$(1,4,2)(3,5,6)$$-1$
$2$$6$$(1,6,2,5,4,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.