Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 + 43\cdot 61 + 61^{2} + 41\cdot 61^{3} + 36\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 + 60\cdot 61 + 46\cdot 61^{2} + 18\cdot 61^{3} + 29\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 24 + 14\cdot 61^{2} + 36\cdot 61^{3} + 53\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 29 + 19\cdot 61 + 59\cdot 61^{2} + 17\cdot 61^{3} + 48\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 32 + 41\cdot 61 + 61^{2} + 43\cdot 61^{3} + 12\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 37 + 60\cdot 61 + 46\cdot 61^{2} + 24\cdot 61^{3} + 7\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 50 + 14\cdot 61^{2} + 42\cdot 61^{3} + 31\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 54 + 17\cdot 61 + 59\cdot 61^{2} + 19\cdot 61^{3} + 24\cdot 61^{4} +O\left(61^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,3)(2,5)(4,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,5)(4,7)(6,8)$ | $0$ |
| $2$ | $4$ | $(1,5,8,4)(2,3,7,6)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.