Properties

Label 2.3_109.4t3.3
Dimension 2
Group $D_4$
Conductor $ 3 \cdot 109 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$327= 3 \cdot 109 $
Artin number field: Splitting field of $f= x^{8} - x^{6} + 28 x^{4} + 27 x^{2} + 729 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 43\cdot 61 + 61^{2} + 41\cdot 61^{3} + 36\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 + 60\cdot 61 + 46\cdot 61^{2} + 18\cdot 61^{3} + 29\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 + 14\cdot 61^{2} + 36\cdot 61^{3} + 53\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 19\cdot 61 + 59\cdot 61^{2} + 17\cdot 61^{3} + 48\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 32 + 41\cdot 61 + 61^{2} + 43\cdot 61^{3} + 12\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 + 60\cdot 61 + 46\cdot 61^{2} + 24\cdot 61^{3} + 7\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 50 + 14\cdot 61^{2} + 42\cdot 61^{3} + 31\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 54 + 17\cdot 61 + 59\cdot 61^{2} + 19\cdot 61^{3} + 24\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$
$2$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $4$ $(1,5,8,4)(2,3,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.