Properties

Label 2.3920.12t18.a
Dimension $2$
Group $C_6\times S_3$
Conductor $3920$
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension:$2$
Group:$C_6\times S_3$
Conductor:\(3920\)\(\medspace = 2^{4} \cdot 5 \cdot 7^{2}\)
Artin number field: Galois closure of 12.0.289254654976000000.1
Galois orbit size: $2$
Smallest permutation container: $C_6\times S_3$
Parity: odd
Projective image: $S_3$
Projective field: 3.1.140.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \(x^{6} + 10 x^{3} + 11 x^{2} + 11 x + 2\)  Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 6 a^{5} + 5 a^{3} + a^{2} + 5 a + 4 + \left(9 a^{5} + 9 a^{4} + 7 a^{3} + 8 a^{2} + a + 8\right)\cdot 13 + \left(10 a^{5} + 11 a^{3} + 4 a^{2} + 11 a + 8\right)\cdot 13^{2} + \left(7 a^{5} + a^{4} + 2 a^{3} + 7 a^{2} + 4 a + 3\right)\cdot 13^{3} + \left(10 a^{5} + 10 a^{4} + 10 a^{3} + 10 a^{2} + 7 a + 11\right)\cdot 13^{4} + \left(12 a^{5} + 3 a^{4} + 4 a^{3} + 6 a^{2} + 9 a + 11\right)\cdot 13^{5} + \left(4 a^{5} + 8 a^{4} + 4 a^{3} + a^{2} + 7\right)\cdot 13^{6} + \left(3 a^{5} + a^{4} + 3 a^{3} + 5 a^{2} + 7 a + 3\right)\cdot 13^{7} + \left(3 a^{5} + a^{4} + 11 a^{3} + 6 a^{2} + a + 7\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 6 a^{5} + 7 a^{4} + 5 a^{3} + a^{2} + 12 a + 4 + \left(8 a^{5} + a^{4} + 12 a^{3} + 10 a^{2} + 2 a + 9\right)\cdot 13 + \left(2 a^{4} + a^{3} + 4 a^{2} + 8 a + 12\right)\cdot 13^{2} + \left(a^{5} + 6 a^{3} + 4 a^{2} + 5 a + 3\right)\cdot 13^{3} + \left(4 a^{5} + 5 a^{4} + 11 a^{3} + 2 a^{2} + 7 a + 2\right)\cdot 13^{4} + \left(3 a^{5} + 6 a^{4} + 6 a^{3} + 10 a^{2} + 12 a\right)\cdot 13^{5} + \left(a^{5} + 3 a^{4} + 6 a^{3} + 6 a^{2} + 11 a + 6\right)\cdot 13^{6} + \left(a^{5} + 3 a^{4} + 12 a^{3} + a^{2} + 10 a + 7\right)\cdot 13^{7} + \left(6 a^{5} + 6 a^{4} + 9 a^{3} + 5 a^{2} + 9 a + 4\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 7 a^{5} + 7 a^{2} + 8 a + 12 + \left(12 a^{5} + 12 a^{4} + 10 a^{3} + a^{2} + 9 a + 10\right)\cdot 13 + \left(11 a^{5} + 5 a^{3} + 11 a^{2} + 4 a + 7\right)\cdot 13^{2} + \left(6 a^{5} + a^{4} + 11 a^{3} + 10 a^{2} + 11 a + 3\right)\cdot 13^{3} + \left(10 a^{5} + 10 a^{4} + 6 a^{3} + 2 a^{2} + 2 a + 11\right)\cdot 13^{4} + \left(8 a^{5} + 10 a^{4} + 8 a^{3} + 7 a^{2} + 10 a + 1\right)\cdot 13^{5} + \left(10 a^{5} + 3 a^{4} + 10 a^{3} + 2 a^{2} + 5 a + 11\right)\cdot 13^{6} + \left(9 a^{5} + a^{4} + 11 a^{3} + 6 a^{2} + 2\right)\cdot 13^{7} + \left(11 a^{5} + 6 a^{4} + 10 a^{3} + a^{2} + 11 a + 7\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display
$r_{ 4 }$ $=$ \( 2 a^{5} + 2 a^{4} + 7 a^{3} + 7 a^{2} + 7 a + 10 + \left(6 a^{5} + 2 a^{4} + 2 a^{3} + 12 a^{2} + 4 a + 12\right)\cdot 13 + \left(8 a^{4} + a^{3} + 8 a^{2} + 6 a + 3\right)\cdot 13^{2} + \left(10 a^{5} + 5 a^{4} + 10 a^{3} + 6 a^{2} + 5\right)\cdot 13^{3} + \left(a^{5} + a^{3} + 5 a^{2} + 10 a + 7\right)\cdot 13^{4} + \left(8 a^{5} + 11 a^{4} + 8 a^{3} + 9 a^{2} + 7 a + 4\right)\cdot 13^{5} + \left(12 a^{5} + 4 a^{4} + 9 a^{3} + 9 a^{2} + 11 a + 1\right)\cdot 13^{6} + \left(8 a^{5} + 3 a^{4} + 12 a^{2} + 10 a + 2\right)\cdot 13^{7} + \left(a^{5} + a^{4} + a^{3} + 5 a^{2} + 2 a\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 11 a^{5} + 10 a^{4} + 11 a^{3} + 4 a^{2} + 10 a + 8 + \left(7 a^{5} + 10 a^{4} + 10 a^{3} + a^{2} + a + 8\right)\cdot 13 + \left(12 a^{5} + 5 a^{4} + 2 a^{3} + 6 a^{2} + 7 a + 4\right)\cdot 13^{2} + \left(9 a^{5} + 9 a^{4} + a^{3} + 10 a^{2} + 7 a + 9\right)\cdot 13^{3} + \left(6 a^{4} + 10 a^{3} + 2 a + 10\right)\cdot 13^{4} + \left(11 a^{5} + 11 a^{4} + 2 a^{3} + 12 a + 7\right)\cdot 13^{5} + \left(6 a^{5} + 3 a^{4} + 9 a^{3} + a + 12\right)\cdot 13^{6} + \left(2 a^{5} + 7 a^{4} + 5 a^{3} + 10 a^{2} + 12 a + 7\right)\cdot 13^{7} + \left(12 a^{5} + 10 a^{4} + 11 a^{3} + 8 a^{2} + 6 a + 7\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 4 a^{5} + 10 a^{4} + 3 a^{2} + 4 a + \left(6 a^{5} + 3 a^{4} + 2 a^{3} + a^{2} + 12 a + 6\right)\cdot 13 + \left(10 a^{5} + 12 a^{4} + 10 a^{3} + 12 a^{2} + 2 a + 10\right)\cdot 13^{2} + \left(12 a^{5} + 5 a^{4} + 9 a^{3} + 5 a^{2} + 4 a + 9\right)\cdot 13^{3} + \left(3 a^{4} + 4 a^{3} + 7 a^{2} + 5 a + 4\right)\cdot 13^{4} + \left(8 a^{5} + 4 a^{4} + 7 a^{2} + 4\right)\cdot 13^{5} + \left(2 a^{5} + 8 a^{4} + a^{3} + 6 a^{2} + 7 a + 11\right)\cdot 13^{6} + \left(6 a^{5} + 7 a^{4} + 5 a^{3} + 6 a^{2} + 11 a + 5\right)\cdot 13^{7} + \left(10 a^{5} + 8 a^{4} + 8 a^{3} + 6 a^{2} + 6\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display
$r_{ 7 }$ $=$ \( 5 a^{5} + 7 a^{4} + 8 a^{3} + 2 a^{2} + 9 a + 7 + \left(2 a^{5} + 3 a^{4} + 9 a^{3} + 7 a^{2} + 7 a + 5\right)\cdot 13 + \left(5 a^{5} + 2 a^{4} + 9 a^{3} + 7 a^{2} + 11 a + 1\right)\cdot 13^{2} + \left(4 a^{5} + 8 a^{4} + 5 a^{3} + 8 a^{2} + 4\right)\cdot 13^{3} + \left(8 a^{5} + 12 a^{4} + 2 a^{3} + 12 a^{2} + 2 a + 9\right)\cdot 13^{4} + \left(10 a^{5} + 5 a^{4} + 2 a^{3} + 7 a^{2} + 7 a + 3\right)\cdot 13^{5} + \left(6 a^{5} + 5 a^{4} + 12 a^{3} + 2 a^{2} + 6 a + 8\right)\cdot 13^{6} + \left(12 a^{5} + 3 a^{4} + 10 a^{3} + 6 a + 10\right)\cdot 13^{7} + \left(3 a^{5} + 12 a^{4} + 4 a^{3} + a^{2} + 11 a + 4\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display
$r_{ 8 }$ $=$ \( a^{5} + 9 a^{4} + 5 a^{3} + 3 a^{2} + 4 a + 1 + \left(12 a^{5} + 9 a^{4} + 7 a^{3} + 6 a^{2} + 2 a + 10\right)\cdot 13 + \left(10 a^{5} + 6 a^{4} + 8 a^{3} + 7 a^{2} + 7 a + 2\right)\cdot 13^{2} + \left(2 a^{5} + 9 a^{4} + 10 a^{2} + 4 a + 5\right)\cdot 13^{3} + \left(4 a^{5} + 6 a^{4} + 11 a^{3} + 3 a + 5\right)\cdot 13^{4} + \left(12 a^{5} + 9 a^{4} + 7 a^{3} + 4 a^{2} + 9 a + 4\right)\cdot 13^{5} + \left(11 a^{5} + 11 a^{4} + 2 a^{3} + 8 a^{2} + 3 a + 8\right)\cdot 13^{6} + \left(8 a^{5} + 5 a^{4} + 8 a^{3} + 9 a^{2} + 5 a + 7\right)\cdot 13^{7} + \left(7 a^{5} + 3 a^{4} + a^{3} + 3 a^{2} + 2\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display
$r_{ 9 }$ $=$ \( 5 a^{5} + 3 a^{4} + a^{3} + 7 a^{2} + 12 a + 12 + \left(3 a^{5} + 3 a^{4} + 6 a^{3} + 6 a^{2} + a + 9\right)\cdot 13 + \left(6 a^{5} + 6 a^{4} + 9 a^{3} + 9 a^{2} + 8\right)\cdot 13^{2} + \left(5 a^{5} + a^{4} + 3 a^{3} + 9 a^{2} + 4\right)\cdot 13^{3} + \left(6 a^{5} + 11 a^{4} + 12 a^{3} + 8 a^{2} + 3 a + 10\right)\cdot 13^{4} + \left(11 a^{4} + 4 a^{3} + 8 a^{2} + 12 a + 8\right)\cdot 13^{5} + \left(2 a^{5} + a^{4} + 5 a^{3} + 5 a^{2} + 9 a + 10\right)\cdot 13^{6} + \left(5 a^{5} + 8 a^{4} + 3 a^{3} + 3 a^{2} + 5 a\right)\cdot 13^{7} + \left(2 a^{5} + 6 a^{3} + 12 a^{2} + 7 a + 1\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display
$r_{ 10 }$ $=$ \( 4 a^{5} + 9 a^{4} + 7 a^{3} + 3 a^{2} + 3 a + 6 + \left(6 a^{5} + 8 a^{3} + 4 a^{2} + 8 a + 7\right)\cdot 13 + \left(5 a^{5} + 7 a^{4} + 2 a^{2} + 9 a + 6\right)\cdot 13^{2} + \left(8 a^{5} + a^{4} + 10 a^{3} + 3 a^{2} + 11 a + 1\right)\cdot 13^{3} + \left(10 a^{5} + 9 a^{3} + 8 a^{2} + 3 a + 5\right)\cdot 13^{4} + \left(9 a^{5} + 9 a^{4} + 8 a^{3} + 9 a^{2} + 4 a + 10\right)\cdot 13^{5} + \left(11 a^{5} + 3 a^{4} + 9 a^{3} + 11 a^{2} + 6\right)\cdot 13^{6} + \left(6 a^{5} + 11 a^{4} + 8 a^{3} + 5 a^{2} + 2 a + 7\right)\cdot 13^{7} + \left(10 a^{5} + 12 a^{3} + a^{2} + a + 8\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display
$r_{ 11 }$ $=$ \( 5 a^{5} + 6 a^{4} + a^{3} + 5 a^{2} + 8 a + 8 + \left(3 a^{5} + 8 a^{3} + a^{2} + 3 a + 12\right)\cdot 13 + \left(5 a^{5} + 10 a^{4} + 12 a^{3} + 4 a + 1\right)\cdot 13^{2} + \left(4 a^{5} + 4 a^{4} + 5 a^{2} + a + 5\right)\cdot 13^{3} + \left(2 a^{5} + a^{4} + 10 a^{3} + 3 a^{2} + 8 a + 7\right)\cdot 13^{4} + \left(8 a^{5} + 8 a^{4} + 2 a^{3} + 8 a^{2} + 10\right)\cdot 13^{5} + \left(7 a^{5} + 2 a^{4} + 10 a^{3} + a + 6\right)\cdot 13^{6} + \left(5 a^{5} + 4 a^{4} + 3 a^{3} + a^{2} + 7 a + 1\right)\cdot 13^{7} + \left(5 a^{5} + 8 a^{4} + 7 a^{3} + 9 a^{2} + 8\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display
$r_{ 12 }$ $=$ \( 9 a^{5} + 2 a^{4} + 2 a^{3} + 9 a^{2} + 9 a + 8 + \left(12 a^{5} + 8 a^{4} + 6 a^{3} + 4 a^{2} + 8 a + 2\right)\cdot 13 + \left(10 a^{5} + 2 a^{4} + 3 a^{3} + 3 a^{2} + 4 a + 8\right)\cdot 13^{2} + \left(3 a^{5} + 3 a^{4} + 2 a^{3} + 8 a^{2} + 12 a + 8\right)\cdot 13^{3} + \left(4 a^{5} + 10 a^{4} + a^{2} + 8 a + 5\right)\cdot 13^{4} + \left(10 a^{5} + 11 a^{4} + 7 a^{3} + 11 a^{2} + 4 a + 9\right)\cdot 13^{5} + \left(11 a^{5} + 6 a^{4} + 9 a^{3} + 8 a^{2} + 4 a + 12\right)\cdot 13^{6} + \left(6 a^{5} + 7 a^{4} + 3 a^{3} + 2 a^{2} + 11 a + 6\right)\cdot 13^{7} + \left(2 a^{5} + 5 a^{4} + 5 a^{3} + 3 a^{2} + 10 a + 6\right)\cdot 13^{8} +O(13^{9})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,6,11,8,9,4)(2,3,10,7,12,5)$
$(2,12,10)(4,8,6)$
$(1,11,9)(2,12,10)(3,7,5)(4,8,6)$
$(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$ $-2$ $-2$
$3$ $2$ $(1,8)(2,7)(3,12)(4,11)(5,10)(6,9)$ $0$ $0$
$3$ $2$ $(1,2)(3,6)(4,5)(7,8)(9,12)(10,11)$ $0$ $0$
$1$ $3$ $(1,11,9)(2,10,12)(3,7,5)(4,6,8)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,9,11)(2,12,10)(3,5,7)(4,8,6)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,11,9)(2,12,10)(3,7,5)(4,8,6)$ $-1$ $-1$
$2$ $3$ $(2,12,10)(4,8,6)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(2,10,12)(4,6,8)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$1$ $6$ $(1,5,9,7,11,3)(2,4,12,8,10,6)$ $-2 \zeta_{3}$ $2 \zeta_{3} + 2$
$1$ $6$ $(1,3,11,7,9,5)(2,6,10,8,12,4)$ $2 \zeta_{3} + 2$ $-2 \zeta_{3}$
$2$ $6$ $(1,5,9,7,11,3)(2,6,10,8,12,4)$ $1$ $1$
$2$ $6$ $(1,7)(2,6,10,8,12,4)(3,9)(5,11)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$2$ $6$ $(1,7)(2,4,12,8,10,6)(3,9)(5,11)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$3$ $6$ $(1,6,11,8,9,4)(2,3,10,7,12,5)$ $0$ $0$
$3$ $6$ $(1,4,9,8,11,6)(2,5,12,7,10,3)$ $0$ $0$
$3$ $6$ $(1,12,11,2,9,10)(3,4,7,6,5,8)$ $0$ $0$
$3$ $6$ $(1,10,9,2,11,12)(3,8,5,6,7,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.