Properties

Label 2.3800.6t5.d.a
Dimension $2$
Group $S_3\times C_3$
Conductor $3800$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3\times C_3$
Conductor: \(3800\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 19 \)
Artin stem field: Galois closure of 6.0.115520000.2
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Determinant: 1.152.6t1.c.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.72200.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + 5x^{4} + 10x^{3} + 40x^{2} + 28x + 49 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 18 a + 4 + \left(29 a + 26\right)\cdot 31 + \left(30 a + 10\right)\cdot 31^{2} + \left(30 a + 23\right)\cdot 31^{3} + \left(19 a + 2\right)\cdot 31^{4} + \left(13 a + 20\right)\cdot 31^{5} + \left(12 a + 6\right)\cdot 31^{6} +O(31^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 13 a + 9 + \left(a + 5\right)\cdot 31 + 12\cdot 31^{2} + 23\cdot 31^{3} + \left(11 a + 11\right)\cdot 31^{4} + \left(17 a + 27\right)\cdot 31^{5} + \left(18 a + 17\right)\cdot 31^{6} +O(31^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 24 a + 11 + \left(15 a + 8\right)\cdot 31 + \left(3 a + 14\right)\cdot 31^{2} + \left(19 a + 10\right)\cdot 31^{3} + \left(7 a + 10\right)\cdot 31^{4} + \left(21 a + 6\right)\cdot 31^{5} + \left(29 a + 13\right)\cdot 31^{6} +O(31^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 7 a + 28 + \left(15 a + 15\right)\cdot 31 + \left(27 a + 5\right)\cdot 31^{2} + \left(11 a + 14\right)\cdot 31^{3} + \left(23 a + 6\right)\cdot 31^{4} + \left(9 a + 10\right)\cdot 31^{5} + \left(a + 20\right)\cdot 31^{6} +O(31^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 a + \left(17 a + 20\right)\cdot 31 + \left(3 a + 14\right)\cdot 31^{2} + \left(19 a + 24\right)\cdot 31^{3} + \left(18 a + 21\right)\cdot 31^{4} + 7 a\cdot 31^{5} + \left(17 a + 4\right)\cdot 31^{6} +O(31^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 25 a + 12 + \left(13 a + 17\right)\cdot 31 + \left(27 a + 4\right)\cdot 31^{2} + \left(11 a + 28\right)\cdot 31^{3} + \left(12 a + 8\right)\cdot 31^{4} + \left(23 a + 28\right)\cdot 31^{5} + \left(13 a + 30\right)\cdot 31^{6} +O(31^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,4)(2,6,3)$
$(1,6)(2,4)(3,5)$
$(1,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$3$$2$$(1,6)(2,4)(3,5)$$0$
$1$$3$$(1,5,4)(2,6,3)$$2 \zeta_{3}$
$1$$3$$(1,4,5)(2,3,6)$$-2 \zeta_{3} - 2$
$2$$3$$(1,4,5)$$-\zeta_{3}$
$2$$3$$(1,5,4)$$\zeta_{3} + 1$
$2$$3$$(1,5,4)(2,3,6)$$-1$
$3$$6$$(1,3,4,6,5,2)$$0$
$3$$6$$(1,2,5,6,4,3)$$0$