Properties

Label 2.3800.6t3.c.a
Dimension $2$
Group $D_{6}$
Conductor $3800$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(3800\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 19 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.23104000.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.152.2t1.b.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.152.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 8x^{3} - 25x^{2} + 20x - 4 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 6 a + 7 + \left(25 a + 24\right)\cdot 31 + \left(25 a + 10\right)\cdot 31^{2} + \left(15 a + 24\right)\cdot 31^{3} + \left(3 a + 16\right)\cdot 31^{4} + \left(3 a + 23\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 19 + 2\cdot 31 + 16\cdot 31^{2} + 27\cdot 31^{4} + 16\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 25 a + 19 + \left(5 a + 6\right)\cdot 31 + \left(5 a + 6\right)\cdot 31^{2} + \left(15 a + 30\right)\cdot 31^{3} + \left(27 a + 7\right)\cdot 31^{4} + \left(27 a + 26\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 2 a + 19 + \left(27 a + 26\right)\cdot 31 + \left(29 a + 14\right)\cdot 31^{2} + \left(3 a + 8\right)\cdot 31^{3} + \left(22 a + 20\right)\cdot 31^{4} + \left(24 a + 30\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 + 16\cdot 31 + 28\cdot 31^{2} + 11\cdot 31^{3} + 22\cdot 31^{4} + 30\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 29 a + 23 + \left(3 a + 16\right)\cdot 31 + \left(a + 16\right)\cdot 31^{2} + \left(27 a + 17\right)\cdot 31^{3} + \left(8 a + 29\right)\cdot 31^{4} + \left(6 a + 26\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,2)(5,6)$
$(1,4,2,6,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,4)$$-2$
$3$$2$$(1,2)(5,6)$$0$
$3$$2$$(1,6)(2,4)(3,5)$$0$
$2$$3$$(1,2,3)(4,6,5)$$-1$
$2$$6$$(1,4,2,6,3,5)$$1$

The blue line marks the conjugacy class containing complex conjugation.