Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 a + \left(9 a + 14\right)\cdot 23 + \left(9 a + 9\right)\cdot 23^{2} + \left(3 a + 12\right)\cdot 23^{3} + 11\cdot 23^{4} + \left(12 a + 20\right)\cdot 23^{5} + \left(11 a + 11\right)\cdot 23^{6} + \left(8 a + 22\right)\cdot 23^{7} + \left(22 a + 18\right)\cdot 23^{8} + \left(2 a + 6\right)\cdot 23^{9} + \left(18 a + 8\right)\cdot 23^{10} +O\left(23^{ 11 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 18 a + 10 + \left(13 a + 4\right)\cdot 23 + \left(13 a + 19\right)\cdot 23^{2} + \left(19 a + 9\right)\cdot 23^{3} + \left(22 a + 8\right)\cdot 23^{4} + \left(10 a + 21\right)\cdot 23^{5} + \left(11 a + 22\right)\cdot 23^{6} + \left(14 a + 4\right)\cdot 23^{7} + 9\cdot 23^{8} + \left(20 a + 13\right)\cdot 23^{9} + \left(4 a + 18\right)\cdot 23^{10} +O\left(23^{ 11 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 5 a + 16 + \left(12 a + 17\right)\cdot 23 + \left(4 a + 8\right)\cdot 23^{2} + \left(13 a + 2\right)\cdot 23^{3} + \left(6 a + 3\right)\cdot 23^{4} + \left(22 a + 11\right)\cdot 23^{5} + \left(9 a + 19\right)\cdot 23^{6} + \left(3 a + 16\right)\cdot 23^{7} + \left(12 a + 20\right)\cdot 23^{8} + \left(9 a + 20\right)\cdot 23^{9} + \left(20 a + 18\right)\cdot 23^{10} +O\left(23^{ 11 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 17 a + 16 + \left(4 a + 1\right)\cdot 23 + \left(7 a + 8\right)\cdot 23^{2} + \left(15 a + 21\right)\cdot 23^{3} + 16\cdot 23^{4} + \left(14 a + 15\right)\cdot 23^{5} + \left(7 a + 9\right)\cdot 23^{6} + \left(15 a + 5\right)\cdot 23^{7} + \left(22 a + 20\right)\cdot 23^{8} + \left(9 a + 12\right)\cdot 23^{9} + \left(7 a + 18\right)\cdot 23^{10} +O\left(23^{ 11 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 6 a + 4 + \left(18 a + 17\right)\cdot 23 + \left(15 a + 17\right)\cdot 23^{2} + \left(7 a + 21\right)\cdot 23^{3} + \left(22 a + 2\right)\cdot 23^{4} + \left(8 a + 20\right)\cdot 23^{5} + \left(15 a + 10\right)\cdot 23^{6} + \left(7 a + 5\right)\cdot 23^{7} + 4\cdot 23^{8} + \left(13 a + 10\right)\cdot 23^{9} + 15 a\cdot 23^{10} +O\left(23^{ 11 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 18 a + 3 + \left(10 a + 14\right)\cdot 23 + \left(18 a + 5\right)\cdot 23^{2} + \left(9 a + 1\right)\cdot 23^{3} + \left(16 a + 3\right)\cdot 23^{4} + 3\cdot 23^{5} + \left(13 a + 17\right)\cdot 23^{6} + \left(19 a + 13\right)\cdot 23^{7} + \left(10 a + 18\right)\cdot 23^{8} + \left(13 a + 4\right)\cdot 23^{9} + \left(2 a + 4\right)\cdot 23^{10} +O\left(23^{ 11 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,3,4)$ |
| $(1,2)(3,6)(4,5)$ |
| $(1,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ |
| $1$ | $3$ | $(1,6,5)(2,3,4)$ | $-2 \zeta_{3} - 2$ |
| $1$ | $3$ | $(1,5,6)(2,4,3)$ | $2 \zeta_{3}$ |
| $2$ | $3$ | $(2,3,4)$ | $-\zeta_{3}$ |
| $2$ | $3$ | $(2,4,3)$ | $\zeta_{3} + 1$ |
| $2$ | $3$ | $(1,6,5)(2,4,3)$ | $-1$ |
| $3$ | $6$ | $(1,2,6,3,5,4)$ | $0$ |
| $3$ | $6$ | $(1,4,5,3,6,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.